Speech-Translation.axera / ax_speech_translate_demo_qwen_api_realtime.py
HY-2012's picture
update realtime translate demo
e76df49 verified
# import subprocess
import tempfile
import os
# import json
# import shutil
import time
import librosa
import torch
import argparse
import soundfile as sf
# from pathlib import Path
import cn2an
import requests
import re
import numpy as np
import onnxruntime as ort
import axengine as axe
import threading
import queue
from collections import deque
# 导入SenseVoice相关模块
from model import SinusoidalPositionEncoder
from utils.ax_model_bin import AX_SenseVoiceSmall
from utils.ax_vad_bin import AX_Fsmn_vad
from utils.vad_utils import merge_vad
from funasr.tokenizer.sentencepiece_tokenizer import SentencepiecesTokenizer
# 导入MeloTTS相关模块
from libmelotts.python.split_utils import split_sentence
from libmelotts.python.text import cleaned_text_to_sequence
from libmelotts.python.text.cleaner import clean_text
from libmelotts.python.symbols import LANG_TO_SYMBOL_MAP
# 配置参数
# tts 参数
TTS_MODEL_DIR = "libmelotts/models"
TTS_MODEL_FILES = {
"g": "g-zh_mix_en.bin",
"encoder": "encoder-zh.onnx",
"decoder": "decoder-zh.axmodel"
}
# Qwen大模型翻译API参数
QWEN_API_URL = "" # API服务地址 http://10.126.29.158:8000
# TTS辅助函数
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
# def get_text_for_tts_infer(text, language_str, symbol_to_id=None):
# norm_text, phone, tone, word2ph = clean_text(text, language_str)
# phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
# phone = intersperse(phone, 0)
# tone = intersperse(tone, 0)
# language = intersperse(language, 0)
# phone = np.array(phone, dtype=np.int32)
# tone = np.array(tone, dtype=np.int32)
# language = np.array(language, dtype=np.int32)
# word2ph = np.array(word2ph, dtype=np.int32) * 2
# word2ph[0] += 1
# return phone, tone, language, norm_text, word2ph
# 处理字符无法不识别
def get_text_for_tts_infer(text, language_str, symbol_to_id=None):
"""修复版音素处理:确保所有数组长度一致"""
try:
norm_text, phone, tone, word2ph = clean_text(text, language_str)
# 特殊音素直接映射为空字符串
phone_mapping = {
'ɛ': '', 'æ': '', 'ʌ': '', 'ʊ': '', 'ɔ': '', 'ɪ': '', 'ɝ': '', 'ɚ': '', 'ɑ': '',
'ʒ': '', 'θ': '', 'ð': '', 'ŋ': '', 'ʃ': '', 'ʧ': '', 'ʤ': '', 'ː': '', 'ˈ': '',
'ˌ': '', 'ʰ': '', 'ʲ': '', 'ʷ': '', 'ʔ': '', 'ɾ': '', 'ɹ': '', 'ɫ': '', 'ɡ': '',
}
# 同步处理 phone 和 tone,确保它们长度一致
processed_phone = []
processed_tone = []
removed_symbols = set()
for p, t in zip(phone, tone):
if p in phone_mapping:
# 特殊音素直接删除,同时删除对应的 tone
removed_symbols.add(p)
elif p in symbol_to_id:
# 正常音素保留,同时保留对应的 tone
processed_phone.append(p)
processed_tone.append(t)
else:
# 其他未知音素也删除
removed_symbols.add(p)
# 记录被删除的音素
if removed_symbols:
print(f"[音素过滤] 删除了 {len(removed_symbols)} 个特殊音素: {sorted(removed_symbols)}")
print(f"[音素过滤] 处理后音素序列长度: {len(processed_phone)}")
print(f"[音素过滤] 处理后音调序列长度: {len(processed_tone)}")
# 如果没有有效音素,使用默认音素,
if not processed_phone:
print("[警告] 没有有效音素,使用默认中文音素")
processed_phone = ['ni', 'hao']
processed_tone = ['1', '3']
word2ph = [1, 1]
# 确保 word2ph 的长度与处理后的音素序列匹配
if len(processed_phone) != len(phone):
print(f"[警告] 音素序列长度变化: {len(phone)} -> {len(processed_phone)}")
# 简单处理:重新计算 word2ph
word2ph = [1] * len(processed_phone)
phone, tone, language = cleaned_text_to_sequence(processed_phone, processed_tone, language_str, symbol_to_id)
phone = intersperse(phone, 0)
tone = intersperse(tone, 0)
language = intersperse(language, 0)
phone = np.array(phone, dtype=np.int32)
tone = np.array(tone, dtype=np.int32)
language = np.array(language, dtype=np.int32)
word2ph = np.array(word2ph, dtype=np.int32) * 2
word2ph[0] += 1
return phone, tone, language, norm_text, word2ph
except Exception as e:
print(f"[错误] 文本处理失败: {e}")
import traceback
traceback.print_exc()
raise e
def audio_numpy_concat(segment_data_list, sr, speed=1.):
audio_segments = []
for segment_data in segment_data_list:
audio_segments += segment_data.reshape(-1).tolist()
audio_segments += [0] * int((sr * 0.05) / speed)
audio_segments = np.array(audio_segments).astype(np.float32)
return audio_segments
def merge_sub_audio(sub_audio_list, pad_size, audio_len):
if pad_size > 0:
for i in range(len(sub_audio_list) - 1):
sub_audio_list[i][-pad_size:] += sub_audio_list[i+1][:pad_size]
sub_audio_list[i][-pad_size:] /= 2
if i > 0:
sub_audio_list[i] = sub_audio_list[i][pad_size:]
sub_audio = np.concatenate(sub_audio_list, axis=-1)
return sub_audio[:audio_len]
def calc_word2pronoun(word2ph, pronoun_lens):
indice = [0]
for ph in word2ph[:-1]:
indice.append(indice[-1] + ph)
word2pronoun = []
for i, ph in zip(indice, word2ph):
word2pronoun.append(np.sum(pronoun_lens[i : i + ph]))
return word2pronoun
def generate_slices(word2pronoun, dec_len):
pn_start, pn_end = 0, 0
zp_start, zp_end = 0, 0
zp_len = 0
pn_slices = []
zp_slices = []
while pn_end < len(word2pronoun):
if pn_end - pn_start > 2 and np.sum(word2pronoun[pn_end - 2 : pn_end + 1]) <= dec_len:
zp_len = np.sum(word2pronoun[pn_end - 2 : pn_end])
zp_start = zp_end - zp_len
pn_start = pn_end - 2
else:
zp_len = 0
zp_start = zp_end
pn_start = pn_end
while pn_end < len(word2pronoun) and zp_len + word2pronoun[pn_end] <= dec_len:
zp_len += word2pronoun[pn_end]
pn_end += 1
zp_end = zp_start + zp_len
pn_slices.append(slice(pn_start, pn_end))
zp_slices.append(slice(zp_start, zp_end))
return pn_slices, zp_slices
# 确认中英文
def lang_detect_with_regex(text):
text_without_digits = re.sub(r'\d+', '', text)
if not text_without_digits:
return 'unknown'
if re.search(r'[\u4e00-\u9fff]', text_without_digits):
return 'chinese'
else:
if re.search(r'[a-zA-Z]', text_without_digits):
return 'english'
else:
return 'unknown'
class QwenTranslationAPI:
def __init__(self, api_url=QWEN_API_URL):
self.api_url = api_url
self.session_id = f"speech_translate_{int(time.time())}"
self.last_reset_time = time.time()
self.request_count = 0
self.max_requests_before_reset = 10
def reset_context(self):
"""重置API上下文"""
try:
reset_url = f"{self.api_url}/api/reset"
response = requests.post(reset_url, json={}, timeout=5)
if response.status_code == 200:
print("[翻译API] ✓ 上下文重置成功")
self.last_reset_time = time.time()
self.request_count = 0
return True
else:
print(f"[翻译API] ✗ 重置失败,状态码: {response.status_code}, 响应: {response.text}")
except Exception as e:
print(f"[翻译API] ✗ 重置上下文失败: {e}")
return False
def check_and_reset_if_needed(self):
"""检查是否需要重置上下文"""
current_time = time.time()
if (self.request_count >= 10 or
current_time - self.last_reset_time > 120): # 2分钟
print(f"[翻译API] 重置 (请求数: {self.request_count}, 时间: {current_time - self.last_reset_time:.1f}秒)")
return self.reset_context()
return True
def translate(self, text_content, max_retries=3, timeout=120):
if not text_content or text_content.strip() == "":
return "输入文本为空"
# 过滤太短的文本
if len(text_content.strip()) < 3:
return text_content
if lang_detect_with_regex(text_content)=='chinese':
prompt_f = "翻译成英文"
else:
prompt_f= "翻译成中文"
prompt = f"{prompt_f}{text_content}"
print(f"[翻译API] 发送请求: {prompt}")
# 检查是否需要重置
self.check_and_reset_if_needed()
for attempt in range(max_retries):
try:
generate_url = f"{self.api_url}/api/generate"
payload = {
"prompt": prompt,
"temperature": 0.1,
"repetition_penalty": 1.0,
"top-p": 0.9,
"top-k": 40,
"max_new_tokens": 512
}
print(f"[翻译API] 开始生成请求 (尝试 {attempt + 1}/{max_retries})")
response = requests.post(generate_url, json=payload, timeout=30)
response.raise_for_status()
print("[翻译API] 生成请求成功")
result_url = f"{self.api_url}/api/generate_provider"
start_time = time.time()
full_translation = ""
error_detected = False
while time.time() - start_time < timeout:
try:
result_response = requests.get(result_url, timeout=10)
result_data = result_response.json()
current_chunk = result_data.get("response", "")
# 检查是否有错误
if "error:" in current_chunk.lower() or "setkvcache failed" in current_chunk.lower():
print(f"[翻译API] ✗ 检测到错误: {current_chunk}")
error_detected = True
print("[翻译API] 立即重置上下文...")
self.reset_context()
break
full_translation += current_chunk
if result_data.get("done", False):
if full_translation and len(full_translation.strip()) > 0:
self.request_count += 1
print(f"[翻译API] ✓ 翻译完成: {full_translation}")
return full_translation
else:
print(f"[翻译API] ✗ 翻译结果为空")
break
time.sleep(0.05)
except requests.exceptions.RequestException as e:
print(f"[翻译API] 轮询请求失败: {e}")
if time.time() - start_time > timeout:
break
time.sleep(0.05)
continue
if error_detected:
if attempt < max_retries - 1:
wait_time = 1
print(f"[翻译API] 等待 {wait_time} 秒后重试...")
time.sleep(wait_time)
continue
else:
print("[翻译API] 达到最大重试次数,返回原文")
return text_content
print(f"[翻译API] 轮询超时,尝试第 {attempt + 1} 次重试")
except requests.exceptions.RequestException as e:
print(f"[翻译API] 请求失败 (尝试 {attempt + 1}/{max_retries}): {e}")
if attempt < max_retries - 1:
wait_time = 2 ** attempt
print(f"[翻译API] 等待 {wait_time} 秒后重试...")
time.sleep(wait_time)
else:
return text_content
except Exception as e:
print(f"[翻译API] 翻译过程出错: {e}")
if attempt < max_retries - 1:
time.sleep(1)
continue
return text_content
print("[翻译API] 翻译超时,返回原文")
return text_content
class AudioResampler:
"""音频重采样器"""
def __init__(self, target_sr=16000):
self.target_sr = target_sr
def resample_audio(self, audio_data, original_sr):
"""重采样音频到目标采样率,asr统一输入16000Hz"""
if original_sr == self.target_sr:
return audio_data
print(f"[重采样] {original_sr}Hz -> {self.target_sr}Hz")
return librosa.resample(y=audio_data, orig_sr=original_sr, target_sr=self.target_sr)
def resample_chunk(self, audio_chunk, original_sr):
"""重采样音频块:长音频进行过冲采样后,音频块可以不做重采样"""
if original_sr == self.target_sr:
return audio_chunk
if len(audio_chunk) < 1000:
return self._linear_resample(audio_chunk, original_sr, self.target_sr)
else:
return librosa.resample(y=audio_chunk, orig_sr=original_sr, target_sr=self.target_sr)
def _linear_resample(self, audio_chunk, original_sr, target_sr):
"""线性插值重采样"""
ratio = target_sr / original_sr
old_length = len(audio_chunk)
new_length = int(old_length * ratio)
old_indices = np.arange(old_length)
new_indices = np.linspace(0, old_length - 1, new_length)
resampled = np.interp(new_indices, old_indices, audio_chunk)
return resampled
class StreamProcessor:
"""流式处理"""
def __init__(self, pipeline, chunk_duration=7.0, overlap_duration=0.01, target_sr=16000):
self.pipeline = pipeline
self.chunk_duration = chunk_duration # 增加4->7秒
self.overlap_duration = overlap_duration # 减少到0.1->0.01秒
self.target_sr = target_sr
self.chunk_samples = int(chunk_duration * target_sr)
self.overlap_samples = int(overlap_duration * target_sr)
self.audio_buffer = deque()
self.result_queue = queue.Queue()
self.is_running = False
self.processing_thread = None
self.resampler = AudioResampler(target_sr=target_sr)
self.segment_counter = 0 # 音频段计数器
self.processed_texts = set() # 记录已处理的文本,避免重复
def start_processing(self):
"""开始流式处理"""
self.is_running = True
self.processing_thread = threading.Thread(target=self._process_loop)
self.processing_thread.daemon = True
self.processing_thread.start()
def stop_processing(self):
"""停止流式处理"""
self.is_running = False
if self.processing_thread:
self.processing_thread.join(timeout=5)
def add_audio_chunk(self, audio_chunk, original_sr=None):
"""添加音频块到缓冲区"""
if original_sr and original_sr != self.target_sr:
audio_chunk = self.resampler.resample_chunk(audio_chunk, original_sr)
self.audio_buffer.append(audio_chunk)
def get_next_result(self, timeout=1.0):
"""获取下一个处理结果"""
try:
return self.result_queue.get(timeout=timeout)
except queue.Empty:
return None
def _process_loop(self):
"""处理循环"""
accumulated_audio = np.array([], dtype=np.float32)
last_asr_result = "" # 记录上一次的ASR结果,防止重复处理
while self.is_running:
if len(self.audio_buffer) > 0:
audio_chunk = self.audio_buffer.popleft()
accumulated_audio = np.concatenate([accumulated_audio, audio_chunk])
# 当积累的音频足够处理时
if len(accumulated_audio) >= self.chunk_samples:
# 提取处理块(减少重叠)
process_chunk = accumulated_audio[:self.chunk_samples]
accumulated_audio = accumulated_audio[self.chunk_samples - self.overlap_samples:]
try:
# 实时ASR识别
asr_result = self._stream_asr(process_chunk)
# 过滤条件:
# # 1. 文本有效且足够长
# 2. 与上次结果不同(避免重复)
# 3. 不是已处理过的文本
if (asr_result and asr_result.strip() and
# len(asr_result.strip()) >= 5 and
asr_result != last_asr_result and
asr_result not in self.processed_texts):
print(f"[实时ASR] {asr_result}")
last_asr_result = asr_result
self.processed_texts.add(asr_result)
# 实时翻译
try:
translation_result = self.pipeline.run_translation(asr_result)
# 检查翻译结果是否有效
if (translation_result and
translation_result != asr_result and
"翻译失败" not in translation_result and
"error:" not in translation_result.lower() and
"输入文本为空" not in translation_result):
print(f"[实时翻译] {translation_result}")
# TTS合成
try:
self.segment_counter += 1
tts_filename = f"stream_segment_{self.segment_counter:04d}.wav"
tts_start_time = time.time()
tts_path = self.pipeline.run_tts(
translation_result,
self.pipeline.output_dir,
tts_filename
)
tts_time = time.time() - tts_start_time
print(f"[实时TTS] 音频已保存: {tts_path} (耗时: {tts_time:.2f}秒)")
# 将完整结果放入队列
self.result_queue.put({
'type': 'complete',
'original': asr_result,
'translated': translation_result,
'audio_path': tts_path,
'timestamp': time.time(),
'segment_id': self.segment_counter
})
except Exception as tts_error:
print(f"[实时TTS错误] {tts_error}")
import traceback
traceback.print_exc()
else:
print(f"[实时翻译] 翻译结果无效,已跳过")
except Exception as translation_error:
print(f"[实时翻译错误] {translation_error}")
else:
if asr_result == last_asr_result:
print(f"[实时ASR] 重复内容已跳过: {asr_result}")
except Exception as e:
print(f"[流式处理错误] {e}")
import traceback
traceback.print_exc()
time.sleep(0.01)
def _stream_asr(self, audio_chunk):
"""流式ASR识别(带VAD)"""
try:
# ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
# 步骤1: VAD检测 - 过滤静音段
# ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
res_vad = self.pipeline.model_vad(audio_chunk)[0]
vad_segments = merge_vad(res_vad, 15 * 1000)
# 如果没有检测到语音段,直接返回空
if not vad_segments or len(vad_segments) == 0:
print(f"[VAD] 未检测到语音活动,跳过此音频块")
return ""
print(f"[VAD] 检测到 {len(vad_segments)} 个语音段")
# ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
# 步骤2: 对检测到的语音段进行ASR识别
# ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
all_results = ""
for i, segment in enumerate(vad_segments):
segment_start, segment_end = segment
start_sample = int(segment_start / 1000 * self.target_sr)
end_sample = min(int(segment_end / 1000 * self.target_sr), len(audio_chunk))
segment_audio = audio_chunk[start_sample:end_sample]
# 跳过太短的片段,减少误识别(小于0.3秒)
if len(segment_audio) < int(0.3 * self.target_sr):
continue
# 写入临时文件
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_file:
sf.write(temp_file.name, segment_audio, self.target_sr)
temp_filename = temp_file.name
try:
# ASR识别
segment_result = self.pipeline.model_bin(
temp_filename,
"auto",
True,
self.pipeline.position_encoding,
tokenizer=self.pipeline.tokenizer,
)
if segment_result and segment_result.strip():
all_results += segment_result + " "
# 清理临时文件
os.unlink(temp_filename)
except Exception as e:
print(f"[ASR错误] 处理VAD段 {i} 时出错: {e}")
if os.path.exists(temp_filename):
os.unlink(temp_filename)
continue
return all_results.strip()
except Exception as e:
print(f"[ASR错误] {e}")
return ""
class SpeechTranslationPipeline:
def __init__(self,
tts_model_dir, tts_model_files,
asr_model_dir="ax_model", seq_len=132,
tts_dec_len=128, sample_rate=44100, tts_speed=0.8,
qwen_api_url=QWEN_API_URL, target_sr=16000,
output_dir="./output"):
self.tts_model_dir = tts_model_dir
self.tts_model_files = tts_model_files
self.asr_model_dir = asr_model_dir
self.seq_len = seq_len
self.tts_dec_len = tts_dec_len
self.sample_rate = sample_rate
self.tts_speed = tts_speed
self.qwen_api_url = qwen_api_url
self.target_sr = target_sr
self.output_dir = output_dir
# 输出目录
os.makedirs(self.output_dir, exist_ok=True)
# 初始化音频重采样器
self.resampler = AudioResampler(target_sr=target_sr)
# 初始化ASR模型
self._init_asr_models()
# 初始化TTS模型
self._init_tts_models()
# 初始化翻译API
self.translator = QwenTranslationAPI(api_url=qwen_api_url)
# 初始化流式处理器
self.stream_processor = StreamProcessor(self, target_sr=target_sr)
# 验证所有必需文件存在
self._validate_files()
# 初始化时重置API上下文
print("[初始化] 重置API上下文...")
self.translator.reset_context()
def _init_asr_models(self):
"""初始化语音识别相关模型"""
print("Initializing SenseVoice models...")
self.model_vad = AX_Fsmn_vad(self.asr_model_dir)
self.embed = SinusoidalPositionEncoder()
self.position_encoding = self.embed.get_position_encoding(
torch.randn(1, self.seq_len, 560)).numpy()
self.model_bin = AX_SenseVoiceSmall(self.asr_model_dir, seq_len=self.seq_len)
tokenizer_path = os.path.join(self.asr_model_dir, "chn_jpn_yue_eng_ko_spectok.bpe.model")
self.tokenizer = SentencepiecesTokenizer(bpemodel=tokenizer_path)
print("SenseVoice models initialized successfully.")
def _init_tts_models(self):
"""初始化TTS相关模型"""
print("Initializing MeloTTS models...")
init_start = time.time()
enc_model = os.path.join(self.tts_model_dir, self.tts_model_files["encoder"])
dec_model = os.path.join(self.tts_model_dir, self.tts_model_files["decoder"])
model_load_start = time.time()
self.sess_enc = ort.InferenceSession(enc_model, providers=["CPUExecutionProvider"], sess_options=ort.SessionOptions())
self.sess_dec = axe.InferenceSession(dec_model)
print(f" Load encoder/decoder models: {(time.time() - model_load_start)*1000:.2f}ms")
g_file = os.path.join(self.tts_model_dir, self.tts_model_files["g"])
self.tts_g = np.fromfile(g_file, dtype=np.float32).reshape(1, 256, 1)
self.tts_language = "ZH_MIX_EN"
self.symbol_to_id = {s: i for i, s in enumerate(LANG_TO_SYMBOL_MAP[self.tts_language])}
print(" Warming up TTS modules...")
warmup_start = time.time()
try:
warmup_text_mix = "这是一个test测试。"
_, _, _, _, _ = get_text_for_tts_infer(warmup_text_mix, self.tts_language, symbol_to_id=self.symbol_to_id)
print(f" Mixed ZH-EN warm-up: {(time.time() - warmup_start)*1000:.2f}ms")
except Exception as e:
print(f" Warning: Mixed warm-up failed: {e}")
total_init_time = (time.time() - init_start) * 1000
print(f"MeloTTS models initialized successfully. Total init time: {total_init_time:.2f}ms")
def _validate_files(self):
"""验证所有必需的文件都存在"""
for key, filename in self.tts_model_files.items():
filepath = os.path.join(self.tts_model_dir, filename)
if not os.path.exists(filepath):
raise FileNotFoundError(f"TTS模型文件不存在: {filepath}")
try:
response = requests.get(f"{self.qwen_api_url}/api/generate_provider", timeout=5)
print("[API检查] 千问API服务连接正常")
except:
print("[API警告] 无法连接到千问API服务,请确保已启动API服务")
def start_stream_processing(self):
"""开始流式处理"""
self.stream_processor.start_processing()
print("[流式处理] 已启动")
def stop_stream_processing(self):
"""停止流式处理"""
self.stream_processor.stop_processing()
print("[流式处理] 已停止")
def process_audio_stream(self, audio_chunk, original_sr=None):
"""处理音频流数据"""
self.stream_processor.add_audio_chunk(audio_chunk, original_sr)
def get_stream_results(self):
"""获取流式处理结果"""
return self.stream_processor.get_next_result()
def load_and_resample_audio(self, audio_file):
"""加载音频并重采样到目标采样率"""
print(f"加载音频文件: {audio_file}")
speech, original_sr = librosa.load(audio_file, sr=None)
audio_duration = len(speech) / original_sr
print(f"原始音频: {original_sr}Hz, 时长: {audio_duration:.2f}秒")
if original_sr != self.target_sr:
speech = self.resampler.resample_audio(speech, original_sr)
print(f"重采样后: {self.target_sr}Hz, 时长: {len(speech)/self.target_sr:.2f}秒")
return speech, self.target_sr
def run_translation(self, text_content):
"""调用Qwen大模型API中英互译"""
print("Starting translation via API...")
translation_start_time = time.time()
translate_content = self.translator.translate(text_content)
translation_time_cost = time.time() - translation_start_time
print(f"Translation processing time: {translation_time_cost:.2f} seconds")
print(f"Translation Result: {translate_content}")
return translate_content
def run_tts(self, translate_content, output_dir, output_wav=None):
"""使用TTS模型合成语音"""
output_path = os.path.join(output_dir, output_wav)
try:
if lang_detect_with_regex(translate_content) == "chinese":
translate_content = cn2an.transform(translate_content, "an2cn")
print(f"TTS synthesis for text: {translate_content}")
sens = split_sentence(translate_content, language_str=self.tts_language)
print(f"Text split into {len(sens)} sentences")
audio_list = []
for n, se in enumerate(sens):
if self.tts_language in ['EN', 'ZH_MIX_EN']:
se = re.sub(r'([a-z])([A-Z])', r'\1 \2', se)
print(f"Processing sentence[{n}]: {se}")
phones, tones, lang_ids, norm_text, word2ph = get_text_for_tts_infer(
se, self.tts_language, symbol_to_id=self.symbol_to_id)
encoder_start = time.time()
z_p, pronoun_lens, audio_len = self.sess_enc.run(None, input_feed={
'phone': phones, 'g': self.tts_g,
'tone': tones, 'language': lang_ids,
'noise_scale': np.array([0], dtype=np.float32),
'length_scale': np.array([1.0 / self.tts_speed], dtype=np.float32),
'noise_scale_w': np.array([0], dtype=np.float32),
'sdp_ratio': np.array([0], dtype=np.float32)})
print(f"Encoder run time: {1000 * (time.time() - encoder_start):.2f}ms")
word2pronoun = calc_word2pronoun(word2ph, pronoun_lens)
pn_slices, zp_slices = generate_slices(word2pronoun, self.tts_dec_len)
audio_len = audio_len[0]
sub_audio_list = []
for i, (ps, zs) in enumerate(zip(pn_slices, zp_slices)):
zp_slice = z_p[..., zs]
sub_dec_len = zp_slice.shape[-1]
sub_audio_len = 512 * sub_dec_len
if zp_slice.shape[-1] < self.tts_dec_len:
zp_slice = np.concatenate((zp_slice, np.zeros((*zp_slice.shape[:-1], self.tts_dec_len - zp_slice.shape[-1]), dtype=np.float32)), axis=-1)
decoder_start = time.time()
audio = self.sess_dec.run(None, input_feed={"z_p": zp_slice, "g": self.tts_g})[0].flatten()
audio_start = 0
if len(sub_audio_list) > 0:
if pn_slices[i - 1].stop > ps.start:
audio_start = 512 * word2pronoun[ps.start]
audio_end = sub_audio_len
if i < len(pn_slices) - 1:
if ps.stop > pn_slices[i + 1].start:
audio_end = sub_audio_len - 512 * word2pronoun[ps.stop - 1]
audio = audio[audio_start:audio_end]
print(f"Decode slice[{i}]: decoder run time {1000 * (time.time() - decoder_start):.2f}ms")
sub_audio_list.append(audio)
sub_audio = merge_sub_audio(sub_audio_list, 0, audio_len)
audio_list.append(sub_audio)
audio = audio_numpy_concat(audio_list, sr=self.sample_rate, speed=self.tts_speed)
sf.write(output_path, audio, self.sample_rate)
print(f"TTS audio saved to {output_path}")
return output_path
except Exception as e:
print(f"TTS synthesis failed: {e}")
import traceback
traceback.print_exc()
raise e
def process_long_audio_stream(self, audio_file, chunk_size=64000):
"""
处理长音频文件的流式模拟
chunk_size增加到64000(4秒 * 16000Hz),与StreamProcessor的chunk_duration匹配
4秒有点短,改到7秒感觉更好点
"""
print(f"[流式处理] 开始处理长音频: {audio_file}")
# 加载并重采样音频
speech, fs = self.load_and_resample_audio(audio_file)
# 启动流式处理
self.start_stream_processing()
total_chunks = (len(speech) + chunk_size - 1) // chunk_size
print(f"[流式处理] 音频总长度: {len(speech)/fs:.2f}秒, 分块数: {total_chunks}")
# 收集所有结果
all_results = []
# 模拟流式输入
chunk_count = 0
for i in range(0, len(speech), chunk_size):
chunk = speech[i:i+chunk_size]
chunk_count += 1
# 处理最后一块:如果不足chunk_size,填零补齐
if len(chunk) < chunk_size:
padding_size = chunk_size - len(chunk)
chunk = np.concatenate([chunk, np.zeros(padding_size, dtype=np.float32)])
print(f"\n[流式处理] 处理音频块 {chunk_count}/{total_chunks} (最后一块,已填零 {padding_size} 样本)")
else:
print(f"\n[流式处理] 处理音频块 {chunk_count}/{total_chunks}")
self.process_audio_stream(chunk, fs)
# 获取并显示实时结果
result = self.get_stream_results()
while result:
print(f"\n{'='*70}")
print(f"[实时结果 #{len(all_results) + 1}]")
print(f"段落ID: {result['segment_id']}")
print(f"原文: {result['original']}")
print(f"翻译: {result['translated']}")
print(f"音频: {result['audio_path']}")
print(f"{'='*70}")
all_results.append(result)
result = self.get_stream_results()
time.sleep(0.01)
# 输出结果
# print(f"\n[流式处理] 等待处理剩余音频块...")
max_wait_time = 20 # 增加等待时间到20秒
wait_start = time.time()
while time.time() - wait_start < max_wait_time:
result = self.get_stream_results()
if result:
print(f"\n{'='*70}")
print(f"[实时结果 #{len(all_results) + 1}]")
print(f"段落ID: {result['segment_id']}")
print(f"原文: {result['original']}")
print(f"翻译: {result['translated']}")
print(f"音频: {result['audio_path']}")
print(f"{'='*70}")
all_results.append(result)
wait_start = time.time() # 重置等待时间
else:
time.sleep(0.02)
# 停止流式处理
self.stop_stream_processing()
print(f"\n[流式处理] 完成!共处理 {len(all_results)} 个有效结果")
return all_results
def main():
parser = argparse.ArgumentParser(description="实时语音翻译pipeline")
parser.add_argument("--audio_file", type=str, default="./wav/en_6mins.wav", help="输入音频文件路径")
parser.add_argument("--output_dir", type=str, default="./output", help="输出目录")
parser.add_argument("--api_url", type=str, default="http://10.126.29.158:8000", help="Qwen API服务器URL")
parser.add_argument("--target_sr", type=int, default=16000, help="ASR目标采样率 (默认: 16000)")
parser.add_argument("--chunk_duration", type=float, default=7.0, help="音频块时长(秒) (默认: 7.0)")
parser.add_argument("--overlap_duration", type=float, default=0.01, help="重叠时长(秒) (默认: 0.1)")
args = parser.parse_args()
print("-------------------实时语音翻译pipeline-------------------\n")
os.makedirs(args.output_dir, exist_ok=True)
print(f"处理音频文件: {args.audio_file}")
print(f"输出目录: {args.output_dir}")
print(f"音频块时长: {args.chunk_duration}秒")
print(f"重叠时长: {args.overlap_duration}秒\n")
# 初始化Pipeline
pipeline = SpeechTranslationPipeline(
tts_model_dir=TTS_MODEL_DIR,
tts_model_files=TTS_MODEL_FILES,
asr_model_dir="ax_model",
seq_len=132,
tts_dec_len=128,
sample_rate=44100,
tts_speed=0.8,
qwen_api_url=args.api_url,
target_sr=args.target_sr,
output_dir=args.output_dir
)
# # 可选:调整流式处理参数
# if args.chunk_duration != 7.0 or args.overlap_duration != 0.01:
# pipeline.stream_processor.chunk_duration = args.chunk_duration
# pipeline.stream_processor.overlap_duration = args.overlap_duration
# pipeline.stream_processor.chunk_samples = int(args.chunk_duration * args.target_sr)
# pipeline.stream_processor.overlap_samples = int(args.overlap_duration * args.target_sr)
# print(f"[配置] 已更新流式处理参数: chunk_duration={args.chunk_duration}s, overlap_duration={args.overlap_duration}s\n")
start_time = time.time()
try:
# 流式处理模式
print("="*70 + "\n")
# 计算chunk_size以匹配chunk_duration
chunk_size = int(args.chunk_duration * args.target_sr)
results = pipeline.process_long_audio_stream(args.audio_file, chunk_size=chunk_size)
print("\n" + "="*70)
print(" 处理完成")
print("="*70)
print(f"\n 成功处理 {len(results)} 个有效翻译段落\n")
# 显示所有结果
if results:
print("所有翻译结果:")
print("-" * 70)
for idx, result in enumerate(results, 1):
print(f"\n【段落 {idx}】(ID: {result['segment_id']})")
print(f" 原文: {result['original']}")
print(f" 译文: {result['translated']}")
print(f" 音频: {result['audio_path']}")
print(f" 时间: {time.strftime('%H:%M:%S', time.localtime(result['timestamp']))}")
print("-" * 70)
# 保存结果到文件
result_file = os.path.join(args.output_dir, "stream_results.txt")
with open(result_file, 'w', encoding='utf-8') as f:
f.write(f"流式翻译+TTS结果 - {args.audio_file}\n")
f.write(f"处理时间: {time.strftime('%Y-%m-%d %H:%M:%S')}\n")
f.write(f"音频块时长: {args.chunk_duration}秒, 重叠时长: {args.overlap_duration}秒\n")
f.write("="*70 + "\n\n")
for idx, result in enumerate(results, 1):
f.write(f"【段落 {idx}】(ID: {result['segment_id']})\n")
f.write(f"原文: {result['original']}\n")
f.write(f"译文: {result['translated']}\n")
f.write(f"音频: {result['audio_path']}\n")
f.write(f"时间: {time.strftime('%H:%M:%S', time.localtime(result['timestamp']))}\n")
f.write("\n" + "-"*70 + "\n\n")
print(f"\n✓ 结果已保存到: {result_file}")
# 统计音频文件
audio_files = [r['audio_path'] for r in results]
print(f"\n 生成 {len(audio_files)} 个TTS音频文件:")
for audio_file in audio_files:
print(f" - {audio_file}")
else:
print("\n 未获取到有效的翻译结果")
print("="*70)
# 总耗时
total_time = time.time() - start_time
print(f"\n总处理时间: {total_time:.2f} 秒")
except Exception as e:
print(f"Pipeline执行失败: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()