COVID-19 Chest X-ray Model

Model Information:

  • Architecture: ResNet50
  • Task: Multi-class classification (4 conditions)
  • Dataset: COVID-19 Radiography Database
  • Input Size: 224×224 RGB images

Classes:

  1. COVID
  2. Lung_Opacity
  3. Normal
  4. Viral Pneumonia

Performance Metrics:

  • Accuracy: 91.6%
  • Precision: 0.92
  • Recall: 0.91
  • F1-Score: 0.91

Usage:

from shifaa.vision import VisionModelFactory

model = VisionModelFactory.create_model(
    model_type="classification",
    model_name="Chest_COVID"
)

result = model.run("chest_xray.jpg", show_image=True)
print(f"Diagnosis: {result['predicted_class']}")
print(f"Confidence: {result['confidence']:.2f}%")

Confusion Matrix:

Confusion Matrix

Preprocessing:

  • Resize to 224×224
  • Random horizontal flip
  • Random rotation ±10°
  • Color jitter (brightness & contrast)
  • ImageNet normalization

Training Details:

  • Loss Function: CrossEntropyLoss (with class weights)
  • Optimizer: Adam (lr=0.0005)
  • Epochs: 30
  • Batch Size: 32

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including Ahmed-Selem/Shifaa-COVID-Chest-Xray-ResNet50