File size: 25,005 Bytes
83b6be6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# Copyright (C) 2025-present Meta Platforms, Inc. and affiliates. All rights reserved.
# Licensed under CC BY-NC 4.0 (non-commercial use only).


from copy import deepcopy
import torch
import os
from packaging import version
import huggingface_hub

from .utils.misc import fill_default_args, freeze_all_params, is_symmetrized, interleave, transpose_to_landscape
from .heads import head_factory
from dust3r.patch_embed import get_patch_embed
from dust3r.losses import swap, swap_ref

import dust3r.utils.path_to_croco
from models.croco import CroCoNet

import  torch.nn as nn

inf = float('inf')

hf_version_number = huggingface_hub.__version__
assert version.parse(hf_version_number) >= version.parse("0.22.0"), "Outdated huggingface_hub version, please reinstall requirements.txt"

def load_model(model_path, device, verbose=True):
    if verbose:
        print('... loading model from', model_path)
    ckpt = torch.load(model_path, map_location='cpu')
    args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R")
    if 'landscape_only' not in args:
        args = args[:-1] + ', landscape_only=False)'
    else:
        args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False')
    assert "landscape_only=False" in args
    if verbose:
        print(f"instantiating : {args}")
    net = eval(args)
    s = net.load_state_dict(ckpt['model'], strict=False)
    if verbose:
        print(s)
    return net.to(device)


class AsymmetricCroCo3DStereo (
    CroCoNet,
    huggingface_hub.PyTorchModelHubMixin,
    library_name="dust3r",
    repo_url="https://github.com/naver/dust3r",
    tags=["image-to-3d"],
):
    """ Two siamese encoders, followed by two decoders.
    The goal is to output 3d points directly, both images in view1's frame
    (hence the asymmetry).   
    """

    def __init__(self,
                 output_mode='pts3d',
                 head_type='linear',
                 depth_mode=('exp', -inf, inf),
                 conf_mode=('exp', 1, inf),
                 freeze='none',
                 landscape_only=True,
                 patch_embed_cls='PatchEmbedDust3R',  # PatchEmbedDust3R or ManyAR_PatchEmbed
                 **croco_kwargs):
        self.patch_embed_cls = patch_embed_cls
        self.croco_args = fill_default_args(croco_kwargs, super().__init__)
        super().__init__(**croco_kwargs)

        # dust3r specific initialization
        self.dec_blocks2 = deepcopy(self.dec_blocks)
        self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs)
        self.set_freeze(freeze)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kw):
        if os.path.isfile(pretrained_model_name_or_path):
            return load_model(pretrained_model_name_or_path, device='cpu')
        else:
            return super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw)

    def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
        self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim)

    def load_state_dict(self, ckpt, **kw):
        # duplicate all weights for the second decoder if not present
        new_ckpt = dict(ckpt)
        if not any(k.startswith('dec_blocks2') for k in ckpt):
            for key, value in ckpt.items():
                if key.startswith('dec_blocks'):
                    new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value
        return super().load_state_dict(new_ckpt, **kw)

    def set_freeze(self, freeze):  # this is for use by downstream models
        self.freeze = freeze
        to_be_frozen = {
            'none':     [],
            'mask':     [self.mask_token],
            'encoder':  [self.mask_token, self.patch_embed, self.enc_blocks],
        }
        freeze_all_params(to_be_frozen[freeze])

    def _set_prediction_head(self, *args, **kwargs):
        """ No prediction head """
        return

    def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size,
                            **kw):
        assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \
            f'{img_size=} must be multiple of {patch_size=}'
        self.output_mode = output_mode
        self.head_type = head_type
        self.depth_mode = depth_mode
        self.conf_mode = conf_mode
        # allocate heads
        self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
        self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
        # magic wrapper
        self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
        self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)

    def _encode_image(self, image, true_shape):
        # embed the image into patches  (x has size B x Npatches x C)
        x, pos = self.patch_embed(image, true_shape=true_shape)

        # add positional embedding without cls token
        assert self.enc_pos_embed is None

        # now apply the transformer encoder and normalization
        for blk in self.enc_blocks:
            x = blk(x, pos)

        x = self.enc_norm(x)
        return x, pos, None

    def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2):
        if img1.shape[-2:] == img2.shape[-2:]:
            out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0),
                                             torch.cat((true_shape1, true_shape2), dim=0))
            out, out2 = out.chunk(2, dim=0)
            pos, pos2 = pos.chunk(2, dim=0)
        else:
            out, pos, _ = self._encode_image(img1, true_shape1)
            out2, pos2, _ = self._encode_image(img2, true_shape2)
        return out, out2, pos, pos2

    def _encode_symmetrized(self, view1, view2):
        img1 = view1['img']
        img2 = view2['img']
        B = img1.shape[0]
        # Recover true_shape when available, otherwise assume that the img shape is the true one
        shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1))
        shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1))
        # warning! maybe the images have different portrait/landscape orientations

        if is_symmetrized(view1, view2):
            # computing half of forward pass!'
            feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2])
            feat1, feat2 = interleave(feat1, feat2)
            pos1, pos2 = interleave(pos1, pos2)
        else:
            feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2)

        return (shape1, shape2), (feat1, feat2), (pos1, pos2)

    def _decoder(self, f1, pos1, f2, pos2):
        final_output = [(f1, f2)]  # before projection

        # project to decoder dim
        f1 = self.decoder_embed(f1)
        f2 = self.decoder_embed(f2)

        final_output.append((f1, f2))
        for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2):
            # img1 side
            f1, _ = blk1(*final_output[-1][::+1], pos1, pos2)
            # img2 side
            f2, _ = blk2(*final_output[-1][::-1], pos2, pos1)
            # store the result
            final_output.append((f1, f2))

        # normalize last output
        del final_output[1]  # duplicate with final_output[0]
        final_output[-1] = tuple(map(self.dec_norm, final_output[-1]))
        return zip(*final_output)

    def _downstream_head(self, head_num, decout, img_shape):
        B, S, D = decout[-1].shape
        # img_shape = tuple(map(int, img_shape))
        head = getattr(self, f'head{head_num}')
        return head(decout, img_shape)

    def forward(self, view1, view2):
        # encode the two images --> B,S,D
        (shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2)

        # combine all ref images into object-centric representation
        dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2)

        with torch.cuda.amp.autocast(enabled=False):
            res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1)
            res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2)

        res2['pts3d_in_other_view'] = res2.pop('pts3d')  # predict view2's pts3d in view1's frame
        return res1, res2

def except_i(a, i):

    if i == 0:
        return a[1:]
    elif i == len(a) - 1:
        return a[:-1]
    if type(a) == list:
        return a[:i] + a[i+1:]
    return torch.cat([a[:i], a[i+1:]], dim=0)

class AsymmetricCroCo3DStereoMultiView (
    CroCoNet,
    huggingface_hub.PyTorchModelHubMixin,
    library_name="dust3r",
    repo_url="https://github.com/naver/dust3r",
    tags=["image-to-3d"],
):
    """ Two siamese encoders, followed by two decoders.
    The goal is to output 3d points directly, both images in view1's frame
    (hence the asymmetry).
    """

    def __init__(self, # # AsymmetricCroCo3DStereo(pos_embed='RoPE100', img_size=(224, 224), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)
                 output_mode='pts3d',
                 head_type='linear',
                 depth_mode=('exp', -inf, inf),
                 conf_mode=('exp', 1, inf),
                 freeze='none',
                 landscape_only=True,
                 patch_embed_cls='PatchEmbedDust3R',  # PatchEmbedDust3R or ManyAR_PatchEmbed (for non-square images)
                 GS = False,
                 GS_skip = False,
                 sh_degree = 0,
                 pts_head_config = {},
                 n_ref = None,
                 **croco_kwargs):
        self.patch_embed_cls = patch_embed_cls
        self.croco_args = fill_default_args(croco_kwargs, super().__init__)
        super().__init__(**croco_kwargs)
        # dust3r specific initialization
        self.pts_head_config = pts_head_config
        self.dec_blocks2 = deepcopy(self.dec_blocks)
        self.GS = GS
        self.GS_skip = GS_skip
        self.sh_degree = sh_degree
        self.n_ref = n_ref
        self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs)
        self.set_freeze(freeze)


    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kw):
        if os.path.isfile(pretrained_model_name_or_path): # here
            return load_model(pretrained_model_name_or_path, device='cpu')
        else:
            return super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw)

    def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
        self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim)

    def load_state_dict(self, ckpt, **kw):
        # duplicate all weights for the second decoder if not present
        new_ckpt = dict(ckpt)
        if not any(k.startswith('dec_blocks2') for k in ckpt):
            for key, value in ckpt.items():
                if key.startswith('dec_blocks'):
                    new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value
        return super().load_state_dict(new_ckpt, **kw)

    def set_freeze(self, freeze): # this is for use by downstream models
        self.freeze = freeze
        to_be_frozen = {
            'none':     [],
            'mask':     [self.mask_token],
            'encoder':  [self.mask_token, self.patch_embed, self.enc_blocks],
        }
        freeze_all_params(to_be_frozen[freeze])

    def _set_prediction_head(self, *args, **kwargs):
        """ No prediction head """
        return

    def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size,
                            **kw):
        assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \
            f'{img_size=} must be multiple of {patch_size=}'
        self.output_mode = output_mode
        self.head_type = head_type
        self.depth_mode = depth_mode
        self.conf_mode = conf_mode
        # allocate heads
        self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode), pts_head_config = self.pts_head_config)
        self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode), pts_head_config = self.pts_head_config)
        # magic wrapper
        self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
        self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)
        self.GS_head = [None, None]
        if self.GS:
            self.downstream_GS_head = nn.ModuleList([head_factory("GSHead", net = self, skip = self.GS_skip, sh_degree = self.sh_degree) for i in range(2)])
            self.GS_head = [transpose_to_landscape(self.downstream_GS_head[i], activate=landscape_only) for i in range(2)]
            
    def _encode_image(self, image, true_shape):
        # embed the image into patches  (x has size B x Npatches x C)
        x, pos = self.patch_embed(image, true_shape=true_shape) # pos is (x,y) location pair used for rope.

        # add positional embedding without cls token
        assert self.enc_pos_embed is None

        # now apply the transformer encoder and normalization
        for blk in self.enc_blocks:
            x = blk(x, pos)

        x = self.enc_norm(x)
        return x, pos, None

    def _encode_image_pairs(self, img1, img2s, true_shape1, true_shape2s):
        if img1.shape[-2:] == img2s[0].shape[-2:]:
            n_view = 1 + len(img2s)
            out, pos, _ = self._encode_image(torch.cat((img1, *img2s), dim=0),
                                             torch.cat((true_shape1, *true_shape2s), dim=0))
            outs = out.chunk(n_view, dim=0)
            poss = pos.chunk(n_view, dim=0)
            out, out2s = outs[0], outs[1:]
            pos, pos2s = poss[0], poss[1:]
        else:
            raise NotImplementedError
        return out, out2s, pos, pos2s

    def _encode_symmetrized(self, view1, view2s):
        img1 = view1['img']
        img2s = [view2['img'] for view2 in view2s]
        B = img1.shape[0]
        # Recover true_shape when available, otherwise assume that the img shape is the true one
        shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1))
        shape2s = [view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1)) for (view2, img2) in zip(view2s, img2s)]
        # warning! maybe the images have different portrait/landscape orientations

        feat1, feat2s, pos1, pos2s = self._encode_image_pairs(img1, img2s, shape1, shape2s)

        return (shape1, shape2s), (feat1, feat2s), (pos1, pos2s)

    def _decoder(self, f1, pos1, f2s, pos2s, n_ref = 1):
        if n_ref > 1:
            return self._decoder_multi_ref(f1, pos1, f2s, pos2s, n_ref)
        final_output = [(f1, *f2s)]  # before projection
        n_view_src = len(f2s)
        # project to decoder dim
        f1 = self.decoder_embed(f1) # [bs, 14 * 14, 1024] -> [bs, 14 * 14, 768]
        bs = f1.shape[0]
        f2s = torch.cat(f2s, dim = 0)
        f2s = self.decoder_embed(f2s).split(bs)

        final_output.append((f1, *f2s))
        for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2):
            # img1 side
            f1, _ = blk1(final_output[-1][0], final_output[-1][1:], pos1, pos2s, mv = True)
            # img2 side
            f2s = []
            for i in range(n_view_src):
                f2s_other = list(final_output[-1][:1 + i]) + list(final_output[-1][1 + i + 1:])
                pos2s_other = [pos1] + list(pos2s[:i]) + list(pos2s[i+1:])
                f2s.append(blk2(final_output[-1][1 + i], f2s_other, pos2s[i], pos2s_other, mv = True)[0]) # TODO: here maybe we need distinguish the ref 
            # store the result
            final_output.append((f1, *f2s))

        # normalize last output
        del final_output[1]  # duplicate with final_output[0]
        final_output[-1] = tuple(map(self.dec_norm, final_output[-1]))

        f1_all = []
        f2_alls = [[] for i in range(n_view_src)]
        for i in range(len(final_output)):
            f1_all.append(final_output[i][0])
            for j in range(n_view_src):
                f2_alls[j].append(final_output[i][1 + j])
        return f1_all, f2_alls

    def _decoder_multi_ref(self, f1, pos1, f2s, pos2s, n_ref = 1):
        final_output_mref = [[[f1, *f2s] for i in range(n_ref)]]
        n_view_src = len(f2s)
        nv = n_view_src + 1
        # project to decoder dim
        f1 = self.decoder_embed(f1) # [bs, 14 * 14, 1024] -> [bs, 14 * 14, 768]
        bs = f1.shape[0]
        f2s = torch.cat(f2s, dim = 0)
        f2s = self.decoder_embed(f2s).split(bs) # nv of [bs, 14 * 14, 768]
        pos_all = [pos1] + list(pos2s)
        final_output_mref.append([[f1, *f2s] for i in range(n_ref)])
        for blk1, blk2, blk_sv in zip(self.dec_blocks, self.dec_blocks2, self.dec_same_view_blocks):
            final_output_mref_i = []
            for ref_id in range(n_ref):
                # img1 side
                fs = [None for i in range(nv)]
                f1, _ = blk1(final_output_mref[-1][ref_id][ref_id], except_i(final_output_mref[-1][ref_id], ref_id), pos1, pos2s, mv = True) # def forward(self, x, y, xpos, ypos, mv = False):
                fs[ref_id] = f1
                # img2 side
                for other_view_id in range(nv):
                    if other_view_id == ref_id:
                        continue
                    # f2s_other = list(final_output[-1][:1 + i]) + list(final_output[-1][1 + i + 1:])
                    # pos2s_other = [pos1] + list(pos2s[:i]) + list(pos2s[i+1:])
                    f2 = blk2(final_output_mref[-1][ref_id][other_view_id], except_i(final_output_mref[-1][ref_id], other_view_id), pos1, pos2s, mv = True)[0] # TODO: here maybe we need distinguish the ref (pos should not be simply "pos1, pose2s"), but pos are the same for all views in the current implementation, need change later. 
                    fs[other_view_id] = f2
                # store the result
                final_output_mref_i.append(fs)
            fs_new = [[None for i in range(nv)] for j in range(n_ref)] # [n_ref, nv, bs, 14 * 14, 768]
            for view_id in range(nv):
                final_output_mref_i_view = [final_output_mref_i[i][view_id] for i in range(n_ref)]
                for ref_id in range(n_ref):
                    if blk_sv is not None:
                        fs_new[ref_id][view_id] = blk_sv(final_output_mref_i[ref_id][view_id], except_i(final_output_mref_i_view, ref_id), pos1, pos2s[:n_ref - 1], mv = True, coeff = 1.)[0] # debug
                    else:
                        fs_new[ref_id][view_id] = final_output_mref_i[ref_id][view_id]
                    
            final_output_mref.append(fs_new)

        # normalize last output
        del final_output_mref[1]  # duplicate with final_output[0]
        final_output = final_output_mref
        # bs * n_ref
        final_output_last = []
        for view_id in range(nv):
            final_output_last_view = torch.stack([final_output[-1][i][view_id] for i in range(n_ref)], dim = 1) # [bs, n_ref, 14 * 14, 768]
            final_output_last.append(final_output_last_view.flatten(0, 1)) # nv of [bs * n_ref, 14 * 14, 768]
        final_output[-1] = tuple(final_output_last)

        final_output[-1] = tuple(map(self.dec_norm, final_output[-1]))

        for data_id in range(bs):
            for ref_id in range(1, n_ref):
                swap_ref(final_output[-1][0][data_id * n_ref + ref_id], final_output[-1][ref_id][data_id * n_ref + ref_id])
        
        final_output = final_output[-1:]
        f1_all = []
        f2_alls = [[] for i in range(n_view_src)]
        for i in range(len(final_output)):
            f1_all.append(final_output[i][0])
            for j in range(n_view_src):
                f2_alls[j].append(final_output[i][1 + j])
        
        return f1_all, f2_alls

    def _downstream_head(self, head_num, decout, img_shape):
        # B, S, D = decout[-1].shape
        # img_shape = tuple(map(int, img_shape))
        head = getattr(self, f'head{head_num}')
        return head(decout, img_shape)
    
    def _downstream_head_GS(self, head_num, decout, img_shape):
        # B, S, D = decout[-1].shape
        # img_shape = tuple(map(int, img_shape))
        head = self.GS_head[head_num - 1]
        return head(decout, img_shape)

    def forward(self, view1, view2s_all):
        # encode the two images --> B,S,D
        num_render_views = view2s_all[0].get("num_render_views", torch.Tensor([0]).long())[0].item()
        n_ref = view2s_all[0].get("n_ref", torch.Tensor([1]).long())[0].item()
        if self.n_ref is not None:
            n_ref = self.n_ref
        assert self.m_ref_flag == False or (self.m_ref_flag == True and n_ref > 1), f"No. of reference views should be > 1 if m_ref_flag is True"

        if num_render_views:
            view2s, view2s_render = view2s_all[:-num_render_views], view2s_all[-num_render_views:]
        else:
            view2s, view2s_render = view2s_all, []
        
        (shape1, shape2s), (feat1, feat2s), (pos1, pos2s) = self._encode_symmetrized(view1, view2s) # every view is dealt with the same param.
        
        # combine all ref images into object-centric representation
        dec1, dec2s = self._decoder(feat1, pos1, feat2s, pos2s, n_ref = n_ref)
        
        with torch.cuda.amp.autocast(enabled=False):
            # print('1 shape', [tok.shape for tok in dec1]) # 1 shape [torch.Size([4, 14 * 14, 1024]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768])]
            # print('2 shape', [[tok.shape for tok in dec2] for (dec2, shape2) in zip(dec2s, shape2s)]) # 2 shape [[torch.Size([4, 196, 1024]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768])], [torch.Size([4, 196, 1024]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768])], [torch.Size([4, 196, 1024]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768])]]
            bs = view1['img'].shape[0]
            view1_img = view1['img'].repeat_interleave(n_ref, dim = 0)
            view2s_img = [view2['img'].repeat_interleave(n_ref, dim = 0) for view2 in view2s]
            
            views_img = [view1_img] + view2s_img
            for data_id in range(bs):
                for ref_id in range(1, n_ref):
                    swap_ref(views_img[0][data_id * n_ref + ref_id], views_img[ref_id][data_id * n_ref + ref_id])
            view1_img = views_img[0]
            view2s_img = views_img[1:]

            res1 = self._downstream_head(1, ([tok.float() for tok in dec1], view1_img), shape1)
            res2s = [self._downstream_head(2, ([tok.float() for tok in dec2], view2_img), shape2) for (dec2, shape2, view2_img) in zip(dec2s, shape2s, view2s_img)]
            if self.GS:
                res1_GS = self._downstream_head_GS(1, ([tok.float() for tok in dec1], view1_img), shape1)
                res2s_GS = [self._downstream_head_GS(2, ([tok.float() for tok in dec2], view2_img), shape2) for (dec2, shape2, view2_img) in zip(dec2s, shape2s, view2s_img)]
                res1 = {**res1, **res1_GS}
                res2s_new = []
                for (res2, res2_GS) in zip(res2s, res2s_GS):
                    res2 = {**res2, **res2_GS}
                    res2s_new.append(res2)
                res2s = res2s_new

            for res2 in res2s:
                res2['pts3d_in_other_view'] = res2.pop('pts3d')  # predict view2's pts3d in view1's frame
        
        return res1, res2s