File size: 25,005 Bytes
83b6be6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
# Copyright (C) 2025-present Meta Platforms, Inc. and affiliates. All rights reserved.
# Licensed under CC BY-NC 4.0 (non-commercial use only).
from copy import deepcopy
import torch
import os
from packaging import version
import huggingface_hub
from .utils.misc import fill_default_args, freeze_all_params, is_symmetrized, interleave, transpose_to_landscape
from .heads import head_factory
from dust3r.patch_embed import get_patch_embed
from dust3r.losses import swap, swap_ref
import dust3r.utils.path_to_croco
from models.croco import CroCoNet
import torch.nn as nn
inf = float('inf')
hf_version_number = huggingface_hub.__version__
assert version.parse(hf_version_number) >= version.parse("0.22.0"), "Outdated huggingface_hub version, please reinstall requirements.txt"
def load_model(model_path, device, verbose=True):
if verbose:
print('... loading model from', model_path)
ckpt = torch.load(model_path, map_location='cpu')
args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R")
if 'landscape_only' not in args:
args = args[:-1] + ', landscape_only=False)'
else:
args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False')
assert "landscape_only=False" in args
if verbose:
print(f"instantiating : {args}")
net = eval(args)
s = net.load_state_dict(ckpt['model'], strict=False)
if verbose:
print(s)
return net.to(device)
class AsymmetricCroCo3DStereo (
CroCoNet,
huggingface_hub.PyTorchModelHubMixin,
library_name="dust3r",
repo_url="https://github.com/naver/dust3r",
tags=["image-to-3d"],
):
""" Two siamese encoders, followed by two decoders.
The goal is to output 3d points directly, both images in view1's frame
(hence the asymmetry).
"""
def __init__(self,
output_mode='pts3d',
head_type='linear',
depth_mode=('exp', -inf, inf),
conf_mode=('exp', 1, inf),
freeze='none',
landscape_only=True,
patch_embed_cls='PatchEmbedDust3R', # PatchEmbedDust3R or ManyAR_PatchEmbed
**croco_kwargs):
self.patch_embed_cls = patch_embed_cls
self.croco_args = fill_default_args(croco_kwargs, super().__init__)
super().__init__(**croco_kwargs)
# dust3r specific initialization
self.dec_blocks2 = deepcopy(self.dec_blocks)
self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs)
self.set_freeze(freeze)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kw):
if os.path.isfile(pretrained_model_name_or_path):
return load_model(pretrained_model_name_or_path, device='cpu')
else:
return super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw)
def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim)
def load_state_dict(self, ckpt, **kw):
# duplicate all weights for the second decoder if not present
new_ckpt = dict(ckpt)
if not any(k.startswith('dec_blocks2') for k in ckpt):
for key, value in ckpt.items():
if key.startswith('dec_blocks'):
new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value
return super().load_state_dict(new_ckpt, **kw)
def set_freeze(self, freeze): # this is for use by downstream models
self.freeze = freeze
to_be_frozen = {
'none': [],
'mask': [self.mask_token],
'encoder': [self.mask_token, self.patch_embed, self.enc_blocks],
}
freeze_all_params(to_be_frozen[freeze])
def _set_prediction_head(self, *args, **kwargs):
""" No prediction head """
return
def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size,
**kw):
assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \
f'{img_size=} must be multiple of {patch_size=}'
self.output_mode = output_mode
self.head_type = head_type
self.depth_mode = depth_mode
self.conf_mode = conf_mode
# allocate heads
self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
# magic wrapper
self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)
def _encode_image(self, image, true_shape):
# embed the image into patches (x has size B x Npatches x C)
x, pos = self.patch_embed(image, true_shape=true_shape)
# add positional embedding without cls token
assert self.enc_pos_embed is None
# now apply the transformer encoder and normalization
for blk in self.enc_blocks:
x = blk(x, pos)
x = self.enc_norm(x)
return x, pos, None
def _encode_image_pairs(self, img1, img2, true_shape1, true_shape2):
if img1.shape[-2:] == img2.shape[-2:]:
out, pos, _ = self._encode_image(torch.cat((img1, img2), dim=0),
torch.cat((true_shape1, true_shape2), dim=0))
out, out2 = out.chunk(2, dim=0)
pos, pos2 = pos.chunk(2, dim=0)
else:
out, pos, _ = self._encode_image(img1, true_shape1)
out2, pos2, _ = self._encode_image(img2, true_shape2)
return out, out2, pos, pos2
def _encode_symmetrized(self, view1, view2):
img1 = view1['img']
img2 = view2['img']
B = img1.shape[0]
# Recover true_shape when available, otherwise assume that the img shape is the true one
shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1))
shape2 = view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1))
# warning! maybe the images have different portrait/landscape orientations
if is_symmetrized(view1, view2):
# computing half of forward pass!'
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1[::2], img2[::2], shape1[::2], shape2[::2])
feat1, feat2 = interleave(feat1, feat2)
pos1, pos2 = interleave(pos1, pos2)
else:
feat1, feat2, pos1, pos2 = self._encode_image_pairs(img1, img2, shape1, shape2)
return (shape1, shape2), (feat1, feat2), (pos1, pos2)
def _decoder(self, f1, pos1, f2, pos2):
final_output = [(f1, f2)] # before projection
# project to decoder dim
f1 = self.decoder_embed(f1)
f2 = self.decoder_embed(f2)
final_output.append((f1, f2))
for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2):
# img1 side
f1, _ = blk1(*final_output[-1][::+1], pos1, pos2)
# img2 side
f2, _ = blk2(*final_output[-1][::-1], pos2, pos1)
# store the result
final_output.append((f1, f2))
# normalize last output
del final_output[1] # duplicate with final_output[0]
final_output[-1] = tuple(map(self.dec_norm, final_output[-1]))
return zip(*final_output)
def _downstream_head(self, head_num, decout, img_shape):
B, S, D = decout[-1].shape
# img_shape = tuple(map(int, img_shape))
head = getattr(self, f'head{head_num}')
return head(decout, img_shape)
def forward(self, view1, view2):
# encode the two images --> B,S,D
(shape1, shape2), (feat1, feat2), (pos1, pos2) = self._encode_symmetrized(view1, view2)
# combine all ref images into object-centric representation
dec1, dec2 = self._decoder(feat1, pos1, feat2, pos2)
with torch.cuda.amp.autocast(enabled=False):
res1 = self._downstream_head(1, [tok.float() for tok in dec1], shape1)
res2 = self._downstream_head(2, [tok.float() for tok in dec2], shape2)
res2['pts3d_in_other_view'] = res2.pop('pts3d') # predict view2's pts3d in view1's frame
return res1, res2
def except_i(a, i):
if i == 0:
return a[1:]
elif i == len(a) - 1:
return a[:-1]
if type(a) == list:
return a[:i] + a[i+1:]
return torch.cat([a[:i], a[i+1:]], dim=0)
class AsymmetricCroCo3DStereoMultiView (
CroCoNet,
huggingface_hub.PyTorchModelHubMixin,
library_name="dust3r",
repo_url="https://github.com/naver/dust3r",
tags=["image-to-3d"],
):
""" Two siamese encoders, followed by two decoders.
The goal is to output 3d points directly, both images in view1's frame
(hence the asymmetry).
"""
def __init__(self, # # AsymmetricCroCo3DStereo(pos_embed='RoPE100', img_size=(224, 224), head_type='linear', output_mode='pts3d', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12)
output_mode='pts3d',
head_type='linear',
depth_mode=('exp', -inf, inf),
conf_mode=('exp', 1, inf),
freeze='none',
landscape_only=True,
patch_embed_cls='PatchEmbedDust3R', # PatchEmbedDust3R or ManyAR_PatchEmbed (for non-square images)
GS = False,
GS_skip = False,
sh_degree = 0,
pts_head_config = {},
n_ref = None,
**croco_kwargs):
self.patch_embed_cls = patch_embed_cls
self.croco_args = fill_default_args(croco_kwargs, super().__init__)
super().__init__(**croco_kwargs)
# dust3r specific initialization
self.pts_head_config = pts_head_config
self.dec_blocks2 = deepcopy(self.dec_blocks)
self.GS = GS
self.GS_skip = GS_skip
self.sh_degree = sh_degree
self.n_ref = n_ref
self.set_downstream_head(output_mode, head_type, landscape_only, depth_mode, conf_mode, **croco_kwargs)
self.set_freeze(freeze)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kw):
if os.path.isfile(pretrained_model_name_or_path): # here
return load_model(pretrained_model_name_or_path, device='cpu')
else:
return super(AsymmetricCroCo3DStereo, cls).from_pretrained(pretrained_model_name_or_path, **kw)
def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
self.patch_embed = get_patch_embed(self.patch_embed_cls, img_size, patch_size, enc_embed_dim)
def load_state_dict(self, ckpt, **kw):
# duplicate all weights for the second decoder if not present
new_ckpt = dict(ckpt)
if not any(k.startswith('dec_blocks2') for k in ckpt):
for key, value in ckpt.items():
if key.startswith('dec_blocks'):
new_ckpt[key.replace('dec_blocks', 'dec_blocks2')] = value
return super().load_state_dict(new_ckpt, **kw)
def set_freeze(self, freeze): # this is for use by downstream models
self.freeze = freeze
to_be_frozen = {
'none': [],
'mask': [self.mask_token],
'encoder': [self.mask_token, self.patch_embed, self.enc_blocks],
}
freeze_all_params(to_be_frozen[freeze])
def _set_prediction_head(self, *args, **kwargs):
""" No prediction head """
return
def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size,
**kw):
assert img_size[0] % patch_size == 0 and img_size[1] % patch_size == 0, \
f'{img_size=} must be multiple of {patch_size=}'
self.output_mode = output_mode
self.head_type = head_type
self.depth_mode = depth_mode
self.conf_mode = conf_mode
# allocate heads
self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode), pts_head_config = self.pts_head_config)
self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode), pts_head_config = self.pts_head_config)
# magic wrapper
self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)
self.GS_head = [None, None]
if self.GS:
self.downstream_GS_head = nn.ModuleList([head_factory("GSHead", net = self, skip = self.GS_skip, sh_degree = self.sh_degree) for i in range(2)])
self.GS_head = [transpose_to_landscape(self.downstream_GS_head[i], activate=landscape_only) for i in range(2)]
def _encode_image(self, image, true_shape):
# embed the image into patches (x has size B x Npatches x C)
x, pos = self.patch_embed(image, true_shape=true_shape) # pos is (x,y) location pair used for rope.
# add positional embedding without cls token
assert self.enc_pos_embed is None
# now apply the transformer encoder and normalization
for blk in self.enc_blocks:
x = blk(x, pos)
x = self.enc_norm(x)
return x, pos, None
def _encode_image_pairs(self, img1, img2s, true_shape1, true_shape2s):
if img1.shape[-2:] == img2s[0].shape[-2:]:
n_view = 1 + len(img2s)
out, pos, _ = self._encode_image(torch.cat((img1, *img2s), dim=0),
torch.cat((true_shape1, *true_shape2s), dim=0))
outs = out.chunk(n_view, dim=0)
poss = pos.chunk(n_view, dim=0)
out, out2s = outs[0], outs[1:]
pos, pos2s = poss[0], poss[1:]
else:
raise NotImplementedError
return out, out2s, pos, pos2s
def _encode_symmetrized(self, view1, view2s):
img1 = view1['img']
img2s = [view2['img'] for view2 in view2s]
B = img1.shape[0]
# Recover true_shape when available, otherwise assume that the img shape is the true one
shape1 = view1.get('true_shape', torch.tensor(img1.shape[-2:])[None].repeat(B, 1))
shape2s = [view2.get('true_shape', torch.tensor(img2.shape[-2:])[None].repeat(B, 1)) for (view2, img2) in zip(view2s, img2s)]
# warning! maybe the images have different portrait/landscape orientations
feat1, feat2s, pos1, pos2s = self._encode_image_pairs(img1, img2s, shape1, shape2s)
return (shape1, shape2s), (feat1, feat2s), (pos1, pos2s)
def _decoder(self, f1, pos1, f2s, pos2s, n_ref = 1):
if n_ref > 1:
return self._decoder_multi_ref(f1, pos1, f2s, pos2s, n_ref)
final_output = [(f1, *f2s)] # before projection
n_view_src = len(f2s)
# project to decoder dim
f1 = self.decoder_embed(f1) # [bs, 14 * 14, 1024] -> [bs, 14 * 14, 768]
bs = f1.shape[0]
f2s = torch.cat(f2s, dim = 0)
f2s = self.decoder_embed(f2s).split(bs)
final_output.append((f1, *f2s))
for blk1, blk2 in zip(self.dec_blocks, self.dec_blocks2):
# img1 side
f1, _ = blk1(final_output[-1][0], final_output[-1][1:], pos1, pos2s, mv = True)
# img2 side
f2s = []
for i in range(n_view_src):
f2s_other = list(final_output[-1][:1 + i]) + list(final_output[-1][1 + i + 1:])
pos2s_other = [pos1] + list(pos2s[:i]) + list(pos2s[i+1:])
f2s.append(blk2(final_output[-1][1 + i], f2s_other, pos2s[i], pos2s_other, mv = True)[0]) # TODO: here maybe we need distinguish the ref
# store the result
final_output.append((f1, *f2s))
# normalize last output
del final_output[1] # duplicate with final_output[0]
final_output[-1] = tuple(map(self.dec_norm, final_output[-1]))
f1_all = []
f2_alls = [[] for i in range(n_view_src)]
for i in range(len(final_output)):
f1_all.append(final_output[i][0])
for j in range(n_view_src):
f2_alls[j].append(final_output[i][1 + j])
return f1_all, f2_alls
def _decoder_multi_ref(self, f1, pos1, f2s, pos2s, n_ref = 1):
final_output_mref = [[[f1, *f2s] for i in range(n_ref)]]
n_view_src = len(f2s)
nv = n_view_src + 1
# project to decoder dim
f1 = self.decoder_embed(f1) # [bs, 14 * 14, 1024] -> [bs, 14 * 14, 768]
bs = f1.shape[0]
f2s = torch.cat(f2s, dim = 0)
f2s = self.decoder_embed(f2s).split(bs) # nv of [bs, 14 * 14, 768]
pos_all = [pos1] + list(pos2s)
final_output_mref.append([[f1, *f2s] for i in range(n_ref)])
for blk1, blk2, blk_sv in zip(self.dec_blocks, self.dec_blocks2, self.dec_same_view_blocks):
final_output_mref_i = []
for ref_id in range(n_ref):
# img1 side
fs = [None for i in range(nv)]
f1, _ = blk1(final_output_mref[-1][ref_id][ref_id], except_i(final_output_mref[-1][ref_id], ref_id), pos1, pos2s, mv = True) # def forward(self, x, y, xpos, ypos, mv = False):
fs[ref_id] = f1
# img2 side
for other_view_id in range(nv):
if other_view_id == ref_id:
continue
# f2s_other = list(final_output[-1][:1 + i]) + list(final_output[-1][1 + i + 1:])
# pos2s_other = [pos1] + list(pos2s[:i]) + list(pos2s[i+1:])
f2 = blk2(final_output_mref[-1][ref_id][other_view_id], except_i(final_output_mref[-1][ref_id], other_view_id), pos1, pos2s, mv = True)[0] # TODO: here maybe we need distinguish the ref (pos should not be simply "pos1, pose2s"), but pos are the same for all views in the current implementation, need change later.
fs[other_view_id] = f2
# store the result
final_output_mref_i.append(fs)
fs_new = [[None for i in range(nv)] for j in range(n_ref)] # [n_ref, nv, bs, 14 * 14, 768]
for view_id in range(nv):
final_output_mref_i_view = [final_output_mref_i[i][view_id] for i in range(n_ref)]
for ref_id in range(n_ref):
if blk_sv is not None:
fs_new[ref_id][view_id] = blk_sv(final_output_mref_i[ref_id][view_id], except_i(final_output_mref_i_view, ref_id), pos1, pos2s[:n_ref - 1], mv = True, coeff = 1.)[0] # debug
else:
fs_new[ref_id][view_id] = final_output_mref_i[ref_id][view_id]
final_output_mref.append(fs_new)
# normalize last output
del final_output_mref[1] # duplicate with final_output[0]
final_output = final_output_mref
# bs * n_ref
final_output_last = []
for view_id in range(nv):
final_output_last_view = torch.stack([final_output[-1][i][view_id] for i in range(n_ref)], dim = 1) # [bs, n_ref, 14 * 14, 768]
final_output_last.append(final_output_last_view.flatten(0, 1)) # nv of [bs * n_ref, 14 * 14, 768]
final_output[-1] = tuple(final_output_last)
final_output[-1] = tuple(map(self.dec_norm, final_output[-1]))
for data_id in range(bs):
for ref_id in range(1, n_ref):
swap_ref(final_output[-1][0][data_id * n_ref + ref_id], final_output[-1][ref_id][data_id * n_ref + ref_id])
final_output = final_output[-1:]
f1_all = []
f2_alls = [[] for i in range(n_view_src)]
for i in range(len(final_output)):
f1_all.append(final_output[i][0])
for j in range(n_view_src):
f2_alls[j].append(final_output[i][1 + j])
return f1_all, f2_alls
def _downstream_head(self, head_num, decout, img_shape):
# B, S, D = decout[-1].shape
# img_shape = tuple(map(int, img_shape))
head = getattr(self, f'head{head_num}')
return head(decout, img_shape)
def _downstream_head_GS(self, head_num, decout, img_shape):
# B, S, D = decout[-1].shape
# img_shape = tuple(map(int, img_shape))
head = self.GS_head[head_num - 1]
return head(decout, img_shape)
def forward(self, view1, view2s_all):
# encode the two images --> B,S,D
num_render_views = view2s_all[0].get("num_render_views", torch.Tensor([0]).long())[0].item()
n_ref = view2s_all[0].get("n_ref", torch.Tensor([1]).long())[0].item()
if self.n_ref is not None:
n_ref = self.n_ref
assert self.m_ref_flag == False or (self.m_ref_flag == True and n_ref > 1), f"No. of reference views should be > 1 if m_ref_flag is True"
if num_render_views:
view2s, view2s_render = view2s_all[:-num_render_views], view2s_all[-num_render_views:]
else:
view2s, view2s_render = view2s_all, []
(shape1, shape2s), (feat1, feat2s), (pos1, pos2s) = self._encode_symmetrized(view1, view2s) # every view is dealt with the same param.
# combine all ref images into object-centric representation
dec1, dec2s = self._decoder(feat1, pos1, feat2s, pos2s, n_ref = n_ref)
with torch.cuda.amp.autocast(enabled=False):
# print('1 shape', [tok.shape for tok in dec1]) # 1 shape [torch.Size([4, 14 * 14, 1024]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768])]
# print('2 shape', [[tok.shape for tok in dec2] for (dec2, shape2) in zip(dec2s, shape2s)]) # 2 shape [[torch.Size([4, 196, 1024]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768])], [torch.Size([4, 196, 1024]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768])], [torch.Size([4, 196, 1024]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768]), torch.Size([4, 196, 768])]]
bs = view1['img'].shape[0]
view1_img = view1['img'].repeat_interleave(n_ref, dim = 0)
view2s_img = [view2['img'].repeat_interleave(n_ref, dim = 0) for view2 in view2s]
views_img = [view1_img] + view2s_img
for data_id in range(bs):
for ref_id in range(1, n_ref):
swap_ref(views_img[0][data_id * n_ref + ref_id], views_img[ref_id][data_id * n_ref + ref_id])
view1_img = views_img[0]
view2s_img = views_img[1:]
res1 = self._downstream_head(1, ([tok.float() for tok in dec1], view1_img), shape1)
res2s = [self._downstream_head(2, ([tok.float() for tok in dec2], view2_img), shape2) for (dec2, shape2, view2_img) in zip(dec2s, shape2s, view2s_img)]
if self.GS:
res1_GS = self._downstream_head_GS(1, ([tok.float() for tok in dec1], view1_img), shape1)
res2s_GS = [self._downstream_head_GS(2, ([tok.float() for tok in dec2], view2_img), shape2) for (dec2, shape2, view2_img) in zip(dec2s, shape2s, view2s_img)]
res1 = {**res1, **res1_GS}
res2s_new = []
for (res2, res2_GS) in zip(res2s, res2s_GS):
res2 = {**res2, **res2_GS}
res2s_new.append(res2)
res2s = res2s_new
for res2 in res2s:
res2['pts3d_in_other_view'] = res2.pop('pts3d') # predict view2's pts3d in view1's frame
return res1, res2s |