Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,63 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
library_name: transformers
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
#### Quickstart
|
| 8 |
+
|
| 9 |
+
```python
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM
|
| 12 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
import sys
|
| 16 |
+
sys.path.append(PATH_TO_BAAI_Emu3-Chat_MODEL)
|
| 17 |
+
from processing_emu3 import Emu3Processor
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# model path
|
| 21 |
+
EMU_HUB = "BAAI/Emu3-Chat"
|
| 22 |
+
VQ_HUB = "BAAI/Emu3-VisionTokenizer"
|
| 23 |
+
|
| 24 |
+
# prepare model and processor
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
EMU_HUB,
|
| 27 |
+
device_map="cuda:0",
|
| 28 |
+
torch_dtype=torch.bfloat16,
|
| 29 |
+
attn_implementation="flash_attention_2",
|
| 30 |
+
trust_remote_code=True,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True)
|
| 34 |
+
image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
|
| 35 |
+
image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
|
| 36 |
+
processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
|
| 37 |
+
|
| 38 |
+
# prepare input
|
| 39 |
+
text = "Please describe the image"
|
| 40 |
+
image = Image.open("assets/demo.png")
|
| 41 |
+
|
| 42 |
+
inputs = processor(
|
| 43 |
+
text=text,
|
| 44 |
+
image=image,
|
| 45 |
+
mode='U',
|
| 46 |
+
padding_side="left",
|
| 47 |
+
padding="longest",
|
| 48 |
+
return_tensors="pt",
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# prepare hyper parameters
|
| 52 |
+
GENERATION_CONFIG = GenerationConfig(pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id)
|
| 53 |
+
|
| 54 |
+
# generate
|
| 55 |
+
outputs = model.generate(
|
| 56 |
+
inputs.input_ids.to("cuda:0"),
|
| 57 |
+
GENERATION_CONFIG,
|
| 58 |
+
max_new_tokens=320,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
outputs = outputs[:, inputs.input_ids.shape[-1]:]
|
| 62 |
+
print(processor.batch_decode(outputs, skip_special_tokens=True)[0])
|
| 63 |
+
```
|