File size: 1,977 Bytes
37d2357
 
9e4a6b1
37d2357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cbb402
 
37d2357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cbb402
37d2357
 
 
7cbb402
 
 
 
 
 
 
 
 
 
37d2357
 
 
 
25b8d23
37d2357
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base-expC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vulnerability-severity-classification-roberta-base-expC

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5068
- Accuracy: 0.8484

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.661         | 1.0   | 14844  | 0.6385          | 0.7360   |
| 0.5927        | 2.0   | 29688  | 0.5854          | 0.7616   |
| 0.5032        | 3.0   | 44532  | 0.5394          | 0.7890   |
| 0.5241        | 4.0   | 59376  | 0.5038          | 0.8080   |
| 0.3666        | 5.0   | 74220  | 0.4894          | 0.8245   |
| 0.3042        | 6.0   | 89064  | 0.4862          | 0.8347   |
| 0.3709        | 7.0   | 103908 | 0.4872          | 0.8447   |
| 0.1723        | 8.0   | 118752 | 0.5068          | 0.8484   |


### Framework versions

- Transformers 4.57.3
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1