--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: vulnerability-severity-classification-roberta-base-expC results: [] --- # vulnerability-severity-classification-roberta-base-expC This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5068 - Accuracy: 0.8484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.661 | 1.0 | 14844 | 0.6385 | 0.7360 | | 0.5927 | 2.0 | 29688 | 0.5854 | 0.7616 | | 0.5032 | 3.0 | 44532 | 0.5394 | 0.7890 | | 0.5241 | 4.0 | 59376 | 0.5038 | 0.8080 | | 0.3666 | 5.0 | 74220 | 0.4894 | 0.8245 | | 0.3042 | 6.0 | 89064 | 0.4862 | 0.8347 | | 0.3709 | 7.0 | 103908 | 0.4872 | 0.8447 | | 0.1723 | 8.0 | 118752 | 0.5068 | 0.8484 | ### Framework versions - Transformers 4.57.3 - Pytorch 2.9.1+cu128 - Datasets 4.4.1 - Tokenizers 0.22.1