File size: 31,253 Bytes
baf3373 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
import os
import math
from pathlib import Path
import sys
from contextlib import contextmanager
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
from tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
from datasets import Dataset, DatasetDict, Features, Value, Sequence as HFSequence
from transformers import AutoTokenizer, EsmModel, AutoModelForMaskedLM
from lightning.pytorch import seed_everything
seed_everything(1986)
CSV_PATH = Path("./Classifier_Weight/training_data_cleaned/binding_affinity/c-binding_with_openfold_scores.csv")
OUT_ROOT = Path(
"./Classifier_Weight/training_data_cleaned/binding_affinity"
)
# WT embedding model
WT_MODEL_NAME = "facebook/esm2_t33_650M_UR50D"
WT_MAX_LEN = 1022
WT_BATCH = 32
# SMILES embedding model + tokenizer
SMI_MODEL_NAME = "aaronfeller/PeptideCLM-23M-all"
TOKENIZER_VOCAB = "./Classifier_Weight/tokenizer/new_vocab.txt"
TOKENIZER_SPLITS = "./Classifier_Weight/tokenizer/new_splits.txt"
SMI_MAX_LEN = 768
SMI_BATCH = 128
# Split config
TRAIN_FRAC = 0.80
RANDOM_SEED = 1986
AFFINITY_Q_BINS = 30
COL_SEQ1 = "seq1"
COL_SEQ2 = "seq2"
COL_AFF = "affinity"
COL_F2S = "Fasta2SMILES"
COL_REACT = "REACT_SMILES"
COL_WT_IPTM = "wt_iptm_score"
COL_SMI_IPTM = "smiles_iptm_score"
# Device
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
QUIET = True
USE_TQDM = False
LOG_FILE = None
def log(msg: str):
if LOG_FILE is not None:
Path(LOG_FILE).parent.mkdir(parents=True, exist_ok=True)
with open(LOG_FILE, "a") as f:
f.write(msg.rstrip() + "\n")
if not QUIET:
print(msg)
def pbar(it, **kwargs):
return tqdm(it, **kwargs) if USE_TQDM else it
@contextmanager
def section(title: str):
log(f"\n=== {title} ===")
yield
log(f"=== done: {title} ===")
# -------------------------
# Helpers
# -------------------------
def has_uaa(seq: str) -> bool:
return "X" in str(seq).upper()
def affinity_to_class(a: float) -> str:
# High: >= 9 ; Moderate: [7, 9) ; Low: < 7
if a >= 9.0:
return "High"
elif a >= 7.0:
return "Moderate"
else:
return "Low"
def make_distribution_matched_split(df: pd.DataFrame) -> pd.DataFrame:
df = df.copy()
df[COL_AFF] = pd.to_numeric(df[COL_AFF], errors="coerce")
df = df.dropna(subset=[COL_AFF]).reset_index(drop=True)
df["affinity_class"] = df[COL_AFF].apply(affinity_to_class)
try:
df["aff_bin"] = pd.qcut(df[COL_AFF], q=AFFINITY_Q_BINS, duplicates="drop")
strat_col = "aff_bin"
except Exception:
df["aff_bin"] = df["affinity_class"]
strat_col = "aff_bin"
rng = np.random.RandomState(RANDOM_SEED)
df["split"] = None
for _, g in df.groupby(strat_col, observed=True):
idx = g.index.to_numpy()
rng.shuffle(idx)
n_train = int(math.floor(len(idx) * TRAIN_FRAC))
df.loc[idx[:n_train], "split"] = "train"
df.loc[idx[n_train:], "split"] = "val"
df["split"] = df["split"].fillna("train")
return df
def _summ(x):
x = np.asarray(x, dtype=float)
x = x[~np.isnan(x)]
if len(x) == 0:
return {"n": 0, "mean": np.nan, "std": np.nan, "p50": np.nan, "p95": np.nan}
return {
"n": int(len(x)),
"mean": float(np.mean(x)),
"std": float(np.std(x)),
"p50": float(np.quantile(x, 0.50)),
"p95": float(np.quantile(x, 0.95)),
}
def _len_stats(seqs):
lens = np.asarray([len(str(s)) for s in seqs], dtype=float)
if len(lens) == 0:
return {"n": 0, "mean": np.nan, "std": np.nan, "p50": np.nan, "p95": np.nan}
return {
"n": int(len(lens)),
"mean": float(lens.mean()),
"std": float(lens.std()),
"p50": float(np.quantile(lens, 0.50)),
"p95": float(np.quantile(lens, 0.95)),
}
def verify_split_before_embedding(
df2: pd.DataFrame,
affinity_col: str,
split_col: str,
seq_col: str,
iptm_col: str,
aff_class_col: str = "affinity_class",
aff_bins: int = 30,
save_report_prefix: str | None = None,
verbose: bool = False,
):
df2 = df2.copy()
df2[affinity_col] = pd.to_numeric(df2[affinity_col], errors="coerce")
df2[iptm_col] = pd.to_numeric(df2[iptm_col], errors="coerce")
assert split_col in df2.columns, f"Missing split col: {split_col}"
assert set(df2[split_col].dropna().unique()).issubset({"train", "val"}), f"Unexpected split values: {df2[split_col].unique()}"
assert df2[affinity_col].notna().any(), "No valid affinity values after coercion."
try:
df2["_aff_bin_dbg"] = pd.qcut(df2[affinity_col], q=aff_bins, duplicates="drop")
except Exception:
df2["_aff_bin_dbg"] = df2[aff_class_col].astype(str)
tr = df2[df2[split_col] == "train"].reset_index(drop=True)
va = df2[df2[split_col] == "val"].reset_index(drop=True)
tr_aff = _summ(tr[affinity_col].to_numpy())
va_aff = _summ(va[affinity_col].to_numpy())
tr_len = _len_stats(tr[seq_col].tolist())
va_len = _len_stats(va[seq_col].tolist())
# bin drift
bin_ct = (
df2.groupby([split_col, "_aff_bin_dbg"])
.size()
.groupby(level=0)
.apply(lambda s: s / s.sum())
)
tr_bins = bin_ct.loc["train"]
va_bins = bin_ct.loc["val"]
all_bins = tr_bins.index.union(va_bins.index)
tr_bins = tr_bins.reindex(all_bins, fill_value=0.0)
va_bins = va_bins.reindex(all_bins, fill_value=0.0)
max_bin_diff = float(np.max(np.abs(tr_bins.values - va_bins.values)))
msg = (
f"[split-check] rows={len(df2)} train={len(tr)} val={len(va)} | "
f"aff(mean±std) train={tr_aff['mean']:.3f}±{tr_aff['std']:.3f} val={va_aff['mean']:.3f}±{va_aff['std']:.3f} | "
f"len(p50/p95) train={tr_len['p50']:.1f}/{tr_len['p95']:.1f} val={va_len['p50']:.1f}/{va_len['p95']:.1f} | "
f"max_bin_diff={max_bin_diff:.4f}"
)
log(msg)
if verbose and (not QUIET):
class_ct = df2.groupby([split_col, aff_class_col]).size().unstack(fill_value=0)
class_prop = class_ct.div(class_ct.sum(axis=1), axis=0)
print("\n[verbose] affinity_class counts:\n", class_ct)
print("\n[verbose] affinity_class proportions:\n", class_prop.round(4))
if save_report_prefix is not None:
out = Path(save_report_prefix)
out.parent.mkdir(parents=True, exist_ok=True)
stats_df = pd.DataFrame([
{"split": "train", **{f"aff_{k}": v for k, v in tr_aff.items()}, **{f"len_{k}": v for k, v in tr_len.items()}},
{"split": "val", **{f"aff_{k}": v for k, v in va_aff.items()}, **{f"len_{k}": v for k, v in va_len.items()}},
])
class_ct = df2.groupby([split_col, aff_class_col]).size().unstack(fill_value=0)
class_prop = class_ct.div(class_ct.sum(axis=1), axis=0).reset_index()
stats_df.to_csv(out.with_suffix(".stats.csv"), index=False)
class_prop.to_csv(out.with_suffix(".class_prop.csv"), index=False)
# -------------------------
# WT pooled (ESM2)
# -------------------------
@torch.no_grad()
def wt_pooled_embeddings(seqs, tokenizer, model, batch_size=32, max_length=1022):
embs = []
for i in pbar(range(0, len(seqs), batch_size)):
batch = seqs[i:i + batch_size]
inputs = tokenizer(
batch,
padding=True,
truncation=True,
max_length=max_length,
return_tensors="pt",
)
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
out = model(**inputs)
h = out.last_hidden_state # (B, L, H)
attn = inputs["attention_mask"].unsqueeze(-1) # (B, L, 1)
summed = (h * attn).sum(dim=1) # (B, H)
denom = attn.sum(dim=1).clamp(min=1e-9) # (B, 1)
pooled = (summed / denom).detach().cpu().numpy()
embs.append(pooled)
return np.vstack(embs)
# -------------------------
# WT unpooled (ESM2)
# -------------------------
@torch.no_grad()
def wt_unpooled_one(seq, tokenizer, model, cls_id, eos_id, max_length=1022):
tok = tokenizer(seq, padding=False, truncation=True, max_length=max_length, return_tensors="pt")
tok = {k: v.to(DEVICE) for k, v in tok.items()}
out = model(**tok)
h = out.last_hidden_state[0] # (L, H)
attn = tok["attention_mask"][0].bool() # (L,)
ids = tok["input_ids"][0]
keep = attn.clone()
if cls_id is not None:
keep &= (ids != cls_id)
if eos_id is not None:
keep &= (ids != eos_id)
return h[keep].detach().cpu().to(torch.float16).numpy()
def build_wt_unpooled_dataset(df_split: pd.DataFrame, out_dir: Path, tokenizer, model):
"""
Expects df_split to have:
- target_sequence (seq1)
- sequence (binder seq2; WT binder)
- label, affinity_class, COL_AFF, COL_WT_IPTM
Saves a dataset where each row contains BOTH:
- target_embedding (Lt,H), target_attention_mask, target_length
- binder_embedding (Lb,H), binder_attention_mask, binder_length
"""
cls_id = tokenizer.cls_token_id
eos_id = tokenizer.eos_token_id
H = model.config.hidden_size
features = Features({
"target_sequence": Value("string"),
"sequence": Value("string"),
"label": Value("float32"),
"affinity": Value("float32"),
"affinity_class": Value("string"),
"target_embedding": HFSequence(HFSequence(Value("float16"), length=H)),
"target_attention_mask": HFSequence(Value("int8")),
"target_length": Value("int64"),
"binder_embedding": HFSequence(HFSequence(Value("float16"), length=H)),
"binder_attention_mask": HFSequence(Value("int8")),
"binder_length": Value("int64"),
COL_WT_IPTM: Value("float32"),
COL_AFF: Value("float32"),
})
def gen_rows(df: pd.DataFrame):
for r in pbar(df.itertuples(index=False), total=len(df)):
tgt = str(getattr(r, "target_sequence")).strip()
bnd = str(getattr(r, "sequence")).strip()
y = float(getattr(r, "label"))
aff = float(getattr(r, COL_AFF))
acls = str(getattr(r, "affinity_class"))
iptm = getattr(r, COL_WT_IPTM)
iptm = float(iptm) if pd.notna(iptm) else np.nan
# token embeddings for target + binder (both ESM)
t_emb = wt_unpooled_one(tgt, tokenizer, model, cls_id, eos_id, max_length=WT_MAX_LEN) # (Lt,H)
b_emb = wt_unpooled_one(bnd, tokenizer, model, cls_id, eos_id, max_length=WT_MAX_LEN) # (Lb,H)
t_list = t_emb.tolist()
b_list = b_emb.tolist()
Lt = len(t_list)
Lb = len(b_list)
yield {
"target_sequence": tgt,
"sequence": bnd,
"label": np.float32(y),
"affinity": np.float32(aff),
"affinity_class": acls,
"target_embedding": t_list,
"target_attention_mask": [1] * Lt,
"target_length": int(Lt),
"binder_embedding": b_list,
"binder_attention_mask": [1] * Lb,
"binder_length": int(Lb),
COL_WT_IPTM: np.float32(iptm) if not np.isnan(iptm) else np.float32(np.nan),
COL_AFF: np.float32(aff),
}
out_dir.mkdir(parents=True, exist_ok=True)
ds = Dataset.from_generator(lambda: gen_rows(df_split), features=features)
ds.save_to_disk(str(out_dir), max_shard_size="1GB")
return ds
def build_smiles_unpooled_paired_dataset(df_split: pd.DataFrame, out_dir: Path, wt_tokenizer, wt_model_unpooled,
smi_tok, smi_roformer):
"""
df_split must have:
- target_sequence (seq1)
- sequence (binder smiles string)
- label, affinity_class, COL_AFF, COL_SMI_IPTM
Saves rows with:
target_embedding (Lt,Ht) from ESM
binder_embedding (Lb,Hb) from PeptideCLM
"""
cls_id = wt_tokenizer.cls_token_id
eos_id = wt_tokenizer.eos_token_id
Ht = wt_model_unpooled.config.hidden_size
Hb = getattr(smi_roformer.config, "hidden_size", None)
if Hb is None:
Hb = getattr(smi_roformer.config, "dim", None)
if Hb is None:
raise ValueError("Cannot infer Hb from smi_roformer config; print(smi_roformer.config) and set Hb manually.")
features = Features({
"target_sequence": Value("string"),
"sequence": Value("string"),
"label": Value("float32"),
"affinity": Value("float32"),
"affinity_class": Value("string"),
"target_embedding": HFSequence(HFSequence(Value("float16"), length=Ht)),
"target_attention_mask": HFSequence(Value("int8")),
"target_length": Value("int64"),
"binder_embedding": HFSequence(HFSequence(Value("float16"), length=Hb)),
"binder_attention_mask": HFSequence(Value("int8")),
"binder_length": Value("int64"),
COL_SMI_IPTM: Value("float32"),
COL_AFF: Value("float32"),
})
def gen_rows(df: pd.DataFrame):
for r in pbar(df.itertuples(index=False), total=len(df)):
tgt = str(getattr(r, "target_sequence")).strip()
bnd = str(getattr(r, "sequence")).strip()
y = float(getattr(r, "label"))
aff = float(getattr(r, COL_AFF))
acls = str(getattr(r, "affinity_class"))
iptm = getattr(r, COL_SMI_IPTM)
iptm = float(iptm) if pd.notna(iptm) else np.nan
# target token embeddings (ESM)
t_emb = wt_unpooled_one(tgt, wt_tokenizer, wt_model_unpooled, cls_id, eos_id, max_length=WT_MAX_LEN)
t_list = t_emb.tolist()
Lt = len(t_list)
# binder token embeddings (PeptideCLM)
_, tok_list, mask_list, lengths = smiles_embed_batch_return_both(
[bnd], smi_tok, smi_roformer, max_length=SMI_MAX_LEN
)
b_emb = tok_list[0]
b_list = b_emb.tolist()
Lb = int(lengths[0])
b_mask = mask_list[0].astype(np.int8).tolist()
yield {
"target_sequence": tgt,
"sequence": bnd,
"label": np.float32(y),
"affinity": np.float32(aff),
"affinity_class": acls,
"target_embedding": t_list,
"target_attention_mask": [1] * Lt,
"target_length": int(Lt),
"binder_embedding": b_list,
"binder_attention_mask": [int(x) for x in b_mask],
"binder_length": int(Lb),
COL_SMI_IPTM: np.float32(iptm) if not np.isnan(iptm) else np.float32(np.nan),
COL_AFF: np.float32(aff),
}
out_dir.mkdir(parents=True, exist_ok=True)
ds = Dataset.from_generator(lambda: gen_rows(df_split), features=features)
ds.save_to_disk(str(out_dir), max_shard_size="1GB")
return ds
# -------------------------
# SMILES pooled + unpooled (PeptideCLM)
# -------------------------
def get_special_ids(tokenizer_obj):
cand = [
getattr(tokenizer_obj, "pad_token_id", None),
getattr(tokenizer_obj, "cls_token_id", None),
getattr(tokenizer_obj, "sep_token_id", None),
getattr(tokenizer_obj, "bos_token_id", None),
getattr(tokenizer_obj, "eos_token_id", None),
getattr(tokenizer_obj, "mask_token_id", None),
]
return sorted({x for x in cand if x is not None})
@torch.no_grad()
def smiles_embed_batch_return_both(batch_sequences, tokenizer_obj, model_roformer, max_length):
tok = tokenizer_obj(
batch_sequences,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length,
)
input_ids = tok["input_ids"].to(DEVICE)
attention_mask = tok["attention_mask"].to(DEVICE)
outputs = model_roformer(input_ids=input_ids, attention_mask=attention_mask)
last_hidden = outputs.last_hidden_state # (B, L, H)
special_ids = get_special_ids(tokenizer_obj)
valid = attention_mask.bool()
if len(special_ids) > 0:
sid = torch.tensor(special_ids, device=DEVICE, dtype=torch.long)
if hasattr(torch, "isin"):
valid = valid & (~torch.isin(input_ids, sid))
else:
m = torch.zeros_like(valid)
for s in special_ids:
m |= (input_ids == s)
valid = valid & (~m)
valid_f = valid.unsqueeze(-1).float()
summed = torch.sum(last_hidden * valid_f, dim=1)
denom = torch.clamp(valid_f.sum(dim=1), min=1e-9)
pooled = (summed / denom).detach().cpu().numpy()
token_emb_list, mask_list, lengths = [], [], []
for b in range(last_hidden.shape[0]):
emb = last_hidden[b, valid[b]] # (Li, H)
token_emb_list.append(emb.detach().cpu().to(torch.float16).numpy())
li = emb.shape[0]
lengths.append(int(li))
mask_list.append(np.ones((li,), dtype=np.int8))
return pooled, token_emb_list, mask_list, lengths
def smiles_generate_embeddings_batched_both(seqs, tokenizer_obj, model_roformer, batch_size, max_length):
pooled_all = []
token_emb_all = []
mask_all = []
lengths_all = []
for i in pbar(range(0, len(seqs), batch_size)):
batch = seqs[i:i + batch_size]
pooled, tok_list, m_list, lens = smiles_embed_batch_return_both(
batch, tokenizer_obj, model_roformer, max_length
)
pooled_all.append(pooled)
token_emb_all.extend(tok_list)
mask_all.extend(m_list)
lengths_all.extend(lens)
return np.vstack(pooled_all), token_emb_all, mask_all, lengths_all
def build_target_cache_from_wt_view(wt_view_train: pd.DataFrame, wt_view_val: pd.DataFrame):
wt_tok = AutoTokenizer.from_pretrained(WT_MODEL_NAME)
wt_model = EsmModel.from_pretrained(WT_MODEL_NAME).to(DEVICE).eval()
# compute target pooled embeddings once
tgt_wt_train = wt_view_train["target_sequence"].astype(str).tolist()
tgt_wt_val = wt_view_val["target_sequence"].astype(str).tolist()
wt_train_tgt_emb = wt_pooled_embeddings(
tgt_wt_train, wt_tok, wt_model, batch_size=WT_BATCH, max_length=WT_MAX_LEN
)
wt_val_tgt_emb = wt_pooled_embeddings(
tgt_wt_val, wt_tok, wt_model, batch_size=WT_BATCH, max_length=WT_MAX_LEN
)
# build dict: target_sequence -> embedding
train_map = {s: e for s, e in zip(tgt_wt_train, wt_train_tgt_emb)}
val_map = {s: e for s, e in zip(tgt_wt_val, wt_val_tgt_emb)}
return wt_tok, wt_model, wt_train_tgt_emb, wt_val_tgt_emb, train_map, val_map
# -------------------------
# Main
# -------------------------
def main():
log(f"[INFO] DEVICE: {DEVICE}")
OUT_ROOT.mkdir(parents=True, exist_ok=True)
with section("load csv + dedup"):
df = pd.read_csv(CSV_PATH)
for c in [COL_SEQ1, COL_SEQ2, COL_F2S, COL_REACT]:
if c in df.columns:
df[c] = df[c].apply(lambda x: x.strip() if isinstance(x, str) else x)
# Dedup
DEDUP_COLS = [COL_SEQ1, COL_SEQ2, COL_F2S, COL_REACT]
df = df.drop_duplicates(subset=DEDUP_COLS).reset_index(drop=True)
print("Rows after dedup on", DEDUP_COLS, ":", len(df))
need = [COL_SEQ1, COL_SEQ2, COL_AFF, COL_F2S, COL_REACT, COL_WT_IPTM, COL_SMI_IPTM]
missing = [c for c in need if c not in df.columns]
if missing:
raise ValueError(f"Missing required columns: {missing}")
# numeric affinity for both branches
df[COL_AFF] = pd.to_numeric(df[COL_AFF], errors="coerce")
# WT subset + SMILES subset separately
with section("prepare wt/smiles subsets"):
# WT: requires a canonical peptide sequence (no X) + affinity
df_wt = df.copy()
df_wt["wt_sequence"] = df_wt[COL_SEQ2].astype(str).str.strip()
df_wt = df_wt.dropna(subset=[COL_AFF]).reset_index(drop=True)
df_wt = df_wt[df_wt["wt_sequence"].notna() & (df_wt["wt_sequence"] != "")]
df_wt = df_wt[~df_wt["wt_sequence"].str.contains("X", case=False, na=False)].reset_index(drop=True)
# SMILES: requires affinity + a usable picked SMILES (UAA->REACT, else->Fasta2SMILES)
df_smi = df.copy()
df_smi = df_smi.dropna(subset=[COL_AFF]).reset_index(drop=True)
df_smi = df_smi[
pd.to_numeric(df_smi[COL_SMI_IPTM], errors="coerce").notna()
].reset_index(drop=True) # empty iptm means sth wrong with their smiles sequence
is_uaa = df_smi[COL_SEQ2].astype(str).str.contains("X", case=False, na=False)
df_smi["smiles_sequence"] = np.where(is_uaa, df_smi[COL_REACT], df_smi[COL_F2S])
df_smi["smiles_sequence"] = df_smi["smiles_sequence"].astype(str).str.strip()
df_smi = df_smi[df_smi["smiles_sequence"].notna() & (df_smi["smiles_sequence"] != "")]
df_smi = df_smi[~df_smi["smiles_sequence"].isin(["nan", "None"])].reset_index(drop=True)
log(f"[counts] WT rows={len(df_wt)} | SMILES rows={len(df_smi)} (after per-branch filtering)")
# Split separately
with section("split wt and smiles separately"):
df_wt2 = make_distribution_matched_split(df_wt)
df_smi2 = make_distribution_matched_split(df_smi)
# save split tables
wt_split_csv = OUT_ROOT / "binding_affinity_wt_meta_with_split.csv"
smi_split_csv = OUT_ROOT / "binding_affinity_smiles_meta_with_split.csv"
df_wt2.to_csv(wt_split_csv, index=False)
df_smi2.to_csv(smi_split_csv, index=False)
log(f"Saved WT split meta: {wt_split_csv}")
log(f"Saved SMILES split meta: {smi_split_csv}")
verify_split_before_embedding(
df2=df_wt2,
affinity_col=COL_AFF,
split_col="split",
seq_col="wt_sequence",
iptm_col=COL_WT_IPTM,
aff_class_col="affinity_class",
aff_bins=AFFINITY_Q_BINS,
save_report_prefix=str(OUT_ROOT / "wt_split_doublecheck_report"),
verbose=False,
)
verify_split_before_embedding(
df2=df_smi2,
affinity_col=COL_AFF,
split_col="split",
seq_col="smiles_sequence",
iptm_col=COL_SMI_IPTM,
aff_class_col="affinity_class",
aff_bins=AFFINITY_Q_BINS,
save_report_prefix=str(OUT_ROOT / "smiles_split_doublecheck_report"),
verbose=False,
)
# Prepare split views
def prep_view(df_in: pd.DataFrame, binder_seq_col: str, iptm_col: str) -> pd.DataFrame:
out = df_in.copy()
out["target_sequence"] = out[COL_SEQ1].astype(str).str.strip() # <-- NEW
out["sequence"] = out[binder_seq_col].astype(str).str.strip() # binder
out["label"] = pd.to_numeric(out[COL_AFF], errors="coerce")
out[iptm_col] = pd.to_numeric(out[iptm_col], errors="coerce")
out[COL_AFF] = pd.to_numeric(out[COL_AFF], errors="coerce")
out = out.dropna(subset=["target_sequence", "sequence", "label"]).reset_index(drop=True)
return out[["target_sequence", "sequence", "label", "split", iptm_col, COL_AFF, "affinity_class"]]
wt_view = prep_view(df_wt2, "wt_sequence", COL_WT_IPTM)
smi_view = prep_view(df_smi2, "smiles_sequence", COL_SMI_IPTM)
# -------------------------
# Split views
# -------------------------
wt_train = wt_view[wt_view["split"] == "train"].reset_index(drop=True)
wt_val = wt_view[wt_view["split"] == "val"].reset_index(drop=True)
smi_train = smi_view[smi_view["split"] == "train"].reset_index(drop=True)
smi_val = smi_view[smi_view["split"] == "val"].reset_index(drop=True)
# =========================
# TARGET pooled embeddings (ESM) — SEPARATE per branch
# =========================
with section("TARGET pooled embeddings (ESM) — WT + SMILES separately"):
wt_tok = AutoTokenizer.from_pretrained(WT_MODEL_NAME)
wt_esm = EsmModel.from_pretrained(WT_MODEL_NAME).to(DEVICE).eval()
# ---- WT targets ----
wt_train_tgt_emb = wt_pooled_embeddings(
wt_train["target_sequence"].astype(str).str.strip().tolist(),
wt_tok, wt_esm,
batch_size=WT_BATCH,
max_length=WT_MAX_LEN,
).astype(np.float32)
wt_val_tgt_emb = wt_pooled_embeddings(
wt_val["target_sequence"].astype(str).str.strip().tolist(),
wt_tok, wt_esm,
batch_size=WT_BATCH,
max_length=WT_MAX_LEN,
).astype(np.float32)
# ---- SMILES targets ----
smi_train_tgt_emb = wt_pooled_embeddings(
smi_train["target_sequence"].astype(str).str.strip().tolist(),
wt_tok, wt_esm,
batch_size=WT_BATCH,
max_length=WT_MAX_LEN,
).astype(np.float32)
smi_val_tgt_emb = wt_pooled_embeddings(
smi_val["target_sequence"].astype(str).str.strip().tolist(),
wt_tok, wt_esm,
batch_size=WT_BATCH,
max_length=WT_MAX_LEN,
).astype(np.float32)
# =========================
# WT pooled binder embeddings (binder = WT peptide)
# =========================
with section("WT pooled binder embeddings + save"):
wt_train_emb = wt_pooled_embeddings(
wt_train["sequence"].astype(str).str.strip().tolist(),
wt_tok, wt_esm,
batch_size=WT_BATCH,
max_length=WT_MAX_LEN,
).astype(np.float32)
wt_val_emb = wt_pooled_embeddings(
wt_val["sequence"].astype(str).str.strip().tolist(),
wt_tok, wt_esm,
batch_size=WT_BATCH,
max_length=WT_MAX_LEN,
).astype(np.float32)
wt_train_ds = Dataset.from_dict({
"target_sequence": wt_train["target_sequence"].tolist(),
"sequence": wt_train["sequence"].tolist(),
"label": wt_train["label"].astype(float).tolist(),
"target_embedding": wt_train_tgt_emb,
"embedding": wt_train_emb,
COL_WT_IPTM: wt_train[COL_WT_IPTM].astype(float).tolist(),
COL_AFF: wt_train[COL_AFF].astype(float).tolist(),
"affinity_class": wt_train["affinity_class"].tolist(),
})
wt_val_ds = Dataset.from_dict({
"target_sequence": wt_val["target_sequence"].tolist(),
"sequence": wt_val["sequence"].tolist(),
"label": wt_val["label"].astype(float).tolist(),
"target_embedding": wt_val_tgt_emb,
"embedding": wt_val_emb,
COL_WT_IPTM: wt_val[COL_WT_IPTM].astype(float).tolist(),
COL_AFF: wt_val[COL_AFF].astype(float).tolist(),
"affinity_class": wt_val["affinity_class"].tolist(),
})
wt_pooled_dd = DatasetDict({"train": wt_train_ds, "val": wt_val_ds})
wt_pooled_out = OUT_ROOT / "pair_wt_wt_pooled"
wt_pooled_dd.save_to_disk(str(wt_pooled_out))
log(f"Saved WT pooled -> {wt_pooled_out}")
# =========================
# SMILES pooled binder embeddings (binder = SMILES via PeptideCLM)
# =========================
with section("SMILES pooled binder embeddings + save"):
smi_tok = SMILES_SPE_Tokenizer(TOKENIZER_VOCAB, TOKENIZER_SPLITS)
smi_roformer = (
AutoModelForMaskedLM
.from_pretrained(SMI_MODEL_NAME)
.roformer
.to(DEVICE)
.eval()
)
smi_train_pooled, _, _, _ = smiles_generate_embeddings_batched_both(
smi_train["sequence"].astype(str).str.strip().tolist(),
smi_tok, smi_roformer,
batch_size=SMI_BATCH,
max_length=SMI_MAX_LEN,
)
smi_val_pooled, _, _, _ = smiles_generate_embeddings_batched_both(
smi_val["sequence"].astype(str).str.strip().tolist(),
smi_tok, smi_roformer,
batch_size=SMI_BATCH,
max_length=SMI_MAX_LEN,
)
smi_train_ds = Dataset.from_dict({
"target_sequence": smi_train["target_sequence"].tolist(),
"sequence": smi_train["sequence"].tolist(),
"label": smi_train["label"].astype(float).tolist(),
"target_embedding": smi_train_tgt_emb,
"embedding": smi_train_pooled.astype(np.float32),
COL_SMI_IPTM: smi_train[COL_SMI_IPTM].astype(float).tolist(),
COL_AFF: smi_train[COL_AFF].astype(float).tolist(),
"affinity_class": smi_train["affinity_class"].tolist(),
})
smi_val_ds = Dataset.from_dict({
"target_sequence": smi_val["target_sequence"].tolist(),
"sequence": smi_val["sequence"].tolist(),
"label": smi_val["label"].astype(float).tolist(),
"target_embedding": smi_val_tgt_emb,
"embedding": smi_val_pooled.astype(np.float32),
COL_SMI_IPTM: smi_val[COL_SMI_IPTM].astype(float).tolist(),
COL_AFF: smi_val[COL_AFF].astype(float).tolist(),
"affinity_class": smi_val["affinity_class"].tolist(),
})
smi_pooled_dd = DatasetDict({"train": smi_train_ds, "val": smi_val_ds})
smi_pooled_out = OUT_ROOT / "pair_wt_smiles_pooled"
smi_pooled_dd.save_to_disk(str(smi_pooled_out))
log(f"Saved SMILES pooled -> {smi_pooled_out}")
# =========================
# WT unpooled paired (ESM target + ESM binder) + save
# =========================
with section("WT unpooled paired embeddings + save"):
wt_tok_unpooled = wt_tok # reuse tokenizer
wt_esm_unpooled = wt_esm # reuse model
wt_unpooled_out = OUT_ROOT / "pair_wt_wt_unpooled"
wt_unpooled_dd = DatasetDict({
"train": build_wt_unpooled_dataset(wt_train, wt_unpooled_out / "train",
wt_tok_unpooled, wt_esm_unpooled),
"val": build_wt_unpooled_dataset(wt_val, wt_unpooled_out / "val",
wt_tok_unpooled, wt_esm_unpooled),
})
wt_unpooled_dd.save_to_disk(str(wt_unpooled_out))
log(f"Saved WT unpooled -> {wt_unpooled_out}")
# =========================
# SMILES unpooled paired (ESM target + PeptideCLM binder) + save
# =========================
with section("SMILES unpooled paired embeddings + save"):
smi_unpooled_out = OUT_ROOT / "pair_wt_smiles_unpooled"
smi_unpooled_dd = DatasetDict({
"train": build_smiles_unpooled_paired_dataset(
smi_train, smi_unpooled_out / "train",
wt_tok, wt_esm,
smi_tok, smi_roformer
),
"val": build_smiles_unpooled_paired_dataset(
smi_val, smi_unpooled_out / "val",
wt_tok, wt_esm,
smi_tok, smi_roformer
),
})
smi_unpooled_dd.save_to_disk(str(smi_unpooled_out))
log(f"Saved SMILES unpooled -> {smi_unpooled_out}")
log(f"\n[DONE] All datasets saved under: {OUT_ROOT}")
if __name__ == "__main__":
main()
|