--- language: en tags: - image-classification - computer-vision - pytorch - cnn - cifar10 license: mit datasets: - cifar10 model-index: - name: SimpleCNN CIFAR-10 Classifier results: [] --- # ๐Ÿง  SimpleCNN CIFAR-10 Classifier ๐Ÿ“Œ A simple Convolutional Neural Network (CNN) model trained on the [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html), capable of recognizing 10 classes of common objects. The model was trained using PyTorch and is suitable for educational and prototyping purposes. ## ๐Ÿท๏ธ Classes - Airplane - Automobile - Bird - Cat - Deer - Dog - Frog - Horse - Ship - Truck ## ๐Ÿงฐ Training Procedure 1. Built a custom CNN model with 3 convolutional layers and 2 fully connected layers. 2. Used MaxPooling after each conv layer and dropout for regularization. 3. Resized all input images to 32x32 and applied normalization: `(mean=0.5, std=0.5)`. 4. Training/validation split: - 80% Training - 20% Validation 5. Training setup: - Optimizer: Adam - Loss Function: CrossEntropyLoss - Batch size: 64 - Learning rate: 0.001 - Epochs: 10 6. Saved the best-performing model as `pytorch_model.bin`. ## ๐Ÿ“Š Performance | Metric | Value | |----------------------|-----------| | Best Validation Accuracy | 88.76% | ## โš™๏ธ Framework & Environment - Python: 3.11 - PyTorch: 2.x (Colab) - Torchvision: 0.15.x - Platform: Google Colab (GPU enabled) ## ๐Ÿงช Hyperparameters | Parameter | Value | |-----------------|--------------| | Epochs | 10 | | Batch Size | 64 | | Optimizer | Adam | | Learning Rate | 0.001 | | Loss Function | CrossEntropy | | Image Size | 32x32 | | Data Split | 80% Train / 20% Val | ---