FZH1996
commited on
Commit
·
fe45bc3
1
Parent(s):
cb2ad99
upload fed-lora
Browse files- loralib/__init__.py +4 -0
- loralib/layers.py +319 -0
- loralib/utils.py +49 -0
- setup.py +22 -0
loralib/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name = "lora"
|
| 2 |
+
|
| 3 |
+
from .layers import *
|
| 4 |
+
from .utils import *
|
loralib/layers.py
ADDED
|
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ------------------------------------------------------------------------------------------
|
| 2 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
| 3 |
+
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
| 4 |
+
# ------------------------------------------------------------------------------------------
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
import math
|
| 10 |
+
from typing import Optional, List
|
| 11 |
+
|
| 12 |
+
class LoRALayer():
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
r: int,
|
| 16 |
+
lora_alpha: int,
|
| 17 |
+
lora_dropout: float,
|
| 18 |
+
merge_weights: bool,
|
| 19 |
+
):
|
| 20 |
+
self.r = r
|
| 21 |
+
self.lora_alpha = lora_alpha
|
| 22 |
+
# Optional dropout
|
| 23 |
+
if lora_dropout > 0.:
|
| 24 |
+
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
| 25 |
+
else:
|
| 26 |
+
self.lora_dropout = lambda x: x
|
| 27 |
+
# Mark the weight as unmerged
|
| 28 |
+
self.merged = False
|
| 29 |
+
self.merge_weights = merge_weights
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Embedding(nn.Embedding, LoRALayer):
|
| 33 |
+
# LoRA implemented in a dense layer
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
num_embeddings: int,
|
| 37 |
+
embedding_dim: int,
|
| 38 |
+
r: int = 0,
|
| 39 |
+
lora_alpha: int = 1,
|
| 40 |
+
merge_weights: bool = True,
|
| 41 |
+
**kwargs
|
| 42 |
+
):
|
| 43 |
+
nn.Embedding.__init__(self, num_embeddings, embedding_dim, **kwargs)
|
| 44 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=0,
|
| 45 |
+
merge_weights=merge_weights)
|
| 46 |
+
# Actual trainable parameters
|
| 47 |
+
if r > 0:
|
| 48 |
+
self.lora_A = nn.Parameter(self.weight.new_zeros((r, num_embeddings)))
|
| 49 |
+
self.lora_B = nn.Parameter(self.weight.new_zeros((embedding_dim, r)))
|
| 50 |
+
self.scaling = self.lora_alpha / self.r
|
| 51 |
+
# Freezing the pre-trained weight matrix
|
| 52 |
+
self.weight.requires_grad = False
|
| 53 |
+
self.reset_parameters()
|
| 54 |
+
|
| 55 |
+
def reset_parameters(self):
|
| 56 |
+
nn.Embedding.reset_parameters(self)
|
| 57 |
+
if hasattr(self, 'lora_A'):
|
| 58 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
| 59 |
+
nn.init.zeros_(self.lora_A)
|
| 60 |
+
nn.init.normal_(self.lora_B)
|
| 61 |
+
|
| 62 |
+
def train(self, mode: bool = True):
|
| 63 |
+
nn.Embedding.train(self, mode)
|
| 64 |
+
if mode:
|
| 65 |
+
if self.merge_weights and self.merged:
|
| 66 |
+
# Make sure that the weights are not merged
|
| 67 |
+
if self.r > 0:
|
| 68 |
+
self.weight.data -= (self.lora_B @ self.lora_A).transpose(0, 1) * self.scaling
|
| 69 |
+
self.merged = False
|
| 70 |
+
else:
|
| 71 |
+
if self.merge_weights and not self.merged:
|
| 72 |
+
# Merge the weights and mark it
|
| 73 |
+
if self.r > 0:
|
| 74 |
+
self.weight.data += (self.lora_B @ self.lora_A).transpose(0, 1) * self.scaling
|
| 75 |
+
self.merged = True
|
| 76 |
+
|
| 77 |
+
def forward(self, x: torch.Tensor):
|
| 78 |
+
if self.r > 0 and not self.merged:
|
| 79 |
+
result = nn.Embedding.forward(self, x)
|
| 80 |
+
if self.r > 0:
|
| 81 |
+
after_A = F.embedding(
|
| 82 |
+
x, self.lora_A.transpose(0, 1), self.padding_idx, self.max_norm,
|
| 83 |
+
self.norm_type, self.scale_grad_by_freq, self.sparse
|
| 84 |
+
)
|
| 85 |
+
result += (after_A @ self.lora_B.transpose(0, 1)) * self.scaling
|
| 86 |
+
return result
|
| 87 |
+
else:
|
| 88 |
+
return nn.Embedding.forward(self, x)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class Linear(nn.Linear, LoRALayer):
|
| 92 |
+
# LoRA implemented in a dense layer
|
| 93 |
+
def __init__(
|
| 94 |
+
self,
|
| 95 |
+
in_features: int,
|
| 96 |
+
out_features: int,
|
| 97 |
+
r: int = 0,
|
| 98 |
+
lora_alpha: int = 1,
|
| 99 |
+
lora_dropout: float = 0.,
|
| 100 |
+
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
|
| 101 |
+
merge_weights: bool = True,
|
| 102 |
+
**kwargs
|
| 103 |
+
):
|
| 104 |
+
nn.Linear.__init__(self, in_features, out_features, **kwargs)
|
| 105 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
|
| 106 |
+
merge_weights=merge_weights)
|
| 107 |
+
|
| 108 |
+
self.fan_in_fan_out = fan_in_fan_out
|
| 109 |
+
# Actual trainable parameters
|
| 110 |
+
if r > 0:
|
| 111 |
+
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
|
| 112 |
+
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
|
| 113 |
+
self.scaling = self.lora_alpha / self.r
|
| 114 |
+
# Freezing the pre-trained weight matrix
|
| 115 |
+
self.weight.requires_grad = False
|
| 116 |
+
self.reset_parameters()
|
| 117 |
+
if fan_in_fan_out:
|
| 118 |
+
self.weight.data = self.weight.data.transpose(0, 1)
|
| 119 |
+
|
| 120 |
+
def reset_parameters(self):
|
| 121 |
+
nn.Linear.reset_parameters(self)
|
| 122 |
+
if hasattr(self, 'lora_A'):
|
| 123 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
| 124 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
| 125 |
+
nn.init.zeros_(self.lora_B)
|
| 126 |
+
|
| 127 |
+
def train(self, mode: bool = True):
|
| 128 |
+
def T(w):
|
| 129 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
| 130 |
+
nn.Linear.train(self, mode)
|
| 131 |
+
if mode:
|
| 132 |
+
if self.merge_weights and self.merged:
|
| 133 |
+
# Make sure that the weights are not merged
|
| 134 |
+
if self.r > 0:
|
| 135 |
+
self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
|
| 136 |
+
self.merged = False
|
| 137 |
+
else:
|
| 138 |
+
if self.merge_weights and not self.merged:
|
| 139 |
+
# Merge the weights and mark it
|
| 140 |
+
if self.r > 0:
|
| 141 |
+
self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
|
| 142 |
+
self.merged = True
|
| 143 |
+
|
| 144 |
+
def forward(self, x: torch.Tensor):
|
| 145 |
+
def T(w):
|
| 146 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
| 147 |
+
if self.r > 0 and not self.merged:
|
| 148 |
+
result = F.linear(x, T(self.weight), bias=self.bias)
|
| 149 |
+
if self.r > 0:
|
| 150 |
+
result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
|
| 151 |
+
return result
|
| 152 |
+
else:
|
| 153 |
+
return F.linear(x, T(self.weight), bias=self.bias)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class MergedLinear(nn.Linear, LoRALayer):
|
| 157 |
+
# LoRA implemented in a dense layer
|
| 158 |
+
def __init__(
|
| 159 |
+
self,
|
| 160 |
+
in_features: int,
|
| 161 |
+
out_features: int,
|
| 162 |
+
r: int = 0,
|
| 163 |
+
lora_alpha: int = 1,
|
| 164 |
+
lora_dropout: float = 0.,
|
| 165 |
+
enable_lora: List[bool] = [False],
|
| 166 |
+
fan_in_fan_out: bool = False,
|
| 167 |
+
merge_weights: bool = True,
|
| 168 |
+
**kwargs
|
| 169 |
+
):
|
| 170 |
+
nn.Linear.__init__(self, in_features, out_features, **kwargs)
|
| 171 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
|
| 172 |
+
merge_weights=merge_weights)
|
| 173 |
+
assert out_features % len(enable_lora) == 0, \
|
| 174 |
+
'The length of enable_lora must divide out_features'
|
| 175 |
+
self.enable_lora = enable_lora
|
| 176 |
+
self.fan_in_fan_out = fan_in_fan_out
|
| 177 |
+
# Actual trainable parameters
|
| 178 |
+
if r > 0 and any(enable_lora):
|
| 179 |
+
self.lora_A = nn.Parameter(
|
| 180 |
+
self.weight.new_zeros((r * sum(enable_lora), in_features)))
|
| 181 |
+
self.lora_B = nn.Parameter(
|
| 182 |
+
self.weight.new_zeros((out_features // len(enable_lora) * sum(enable_lora), r))
|
| 183 |
+
) # weights for Conv1D with groups=sum(enable_lora)
|
| 184 |
+
self.scaling = self.lora_alpha / self.r
|
| 185 |
+
# Freezing the pre-trained weight matrix
|
| 186 |
+
self.weight.requires_grad = False
|
| 187 |
+
# Compute the indices
|
| 188 |
+
self.lora_ind = self.weight.new_zeros(
|
| 189 |
+
(out_features, ), dtype=torch.bool
|
| 190 |
+
).view(len(enable_lora), -1)
|
| 191 |
+
self.lora_ind[enable_lora, :] = True
|
| 192 |
+
self.lora_ind = self.lora_ind.view(-1)
|
| 193 |
+
self.reset_parameters()
|
| 194 |
+
if fan_in_fan_out:
|
| 195 |
+
self.weight.data = self.weight.data.transpose(0, 1)
|
| 196 |
+
|
| 197 |
+
def reset_parameters(self):
|
| 198 |
+
nn.Linear.reset_parameters(self)
|
| 199 |
+
if hasattr(self, 'lora_A'):
|
| 200 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
| 201 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
| 202 |
+
nn.init.zeros_(self.lora_B)
|
| 203 |
+
|
| 204 |
+
def zero_pad(self, x):
|
| 205 |
+
result = x.new_zeros((*x.shape[:-1], self.out_features))
|
| 206 |
+
result = result.view(-1, self.out_features)
|
| 207 |
+
result[:, self.lora_ind] = x.reshape(
|
| 208 |
+
-1, self.out_features // len(self.enable_lora) * sum(self.enable_lora)
|
| 209 |
+
)
|
| 210 |
+
return result.view((*x.shape[:-1], self.out_features))
|
| 211 |
+
|
| 212 |
+
def train(self, mode: bool = True):
|
| 213 |
+
def T(w):
|
| 214 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
| 215 |
+
nn.Linear.train(self, mode)
|
| 216 |
+
print(f"lora.train, scaling = {self.scaling}, mode = {mode}, merge_weights = {self.merge_weights}, merged = {self.merged}")
|
| 217 |
+
if mode:
|
| 218 |
+
if self.merge_weights and self.merged:
|
| 219 |
+
# Make sure that the weights are not merged
|
| 220 |
+
if self.r > 0 and any(self.enable_lora):
|
| 221 |
+
delta_w = F.conv1d(
|
| 222 |
+
self.lora_A.data.unsqueeze(0),
|
| 223 |
+
self.lora_B.data.unsqueeze(-1),
|
| 224 |
+
groups=sum(self.enable_lora)
|
| 225 |
+
).squeeze(0)
|
| 226 |
+
self.weight.data -= self.zero_pad(T(delta_w * self.scaling))
|
| 227 |
+
self.merged = False
|
| 228 |
+
else:
|
| 229 |
+
if self.merge_weights and not self.merged:
|
| 230 |
+
# Merge the weights and mark it
|
| 231 |
+
if self.r > 0 and any(self.enable_lora):
|
| 232 |
+
delta_w = F.conv1d(
|
| 233 |
+
self.lora_A.data.unsqueeze(0),
|
| 234 |
+
self.lora_B.data.unsqueeze(-1),
|
| 235 |
+
groups=sum(self.enable_lora)
|
| 236 |
+
).squeeze(0)
|
| 237 |
+
self.weight.data += self.zero_pad(T(delta_w * self.scaling))
|
| 238 |
+
self.merged = True
|
| 239 |
+
|
| 240 |
+
def forward(self, x: torch.Tensor):
|
| 241 |
+
def T(w):
|
| 242 |
+
return w.transpose(0, 1) if self.fan_in_fan_out else w
|
| 243 |
+
if self.merged:
|
| 244 |
+
return F.linear(x, T(self.weight), bias=self.bias)
|
| 245 |
+
else:
|
| 246 |
+
result = F.linear(x, T(self.weight), bias=self.bias)
|
| 247 |
+
if self.r > 0:
|
| 248 |
+
after_A = F.linear(self.lora_dropout(x), self.lora_A)
|
| 249 |
+
after_B = F.conv1d(
|
| 250 |
+
after_A.transpose(-2, -1),
|
| 251 |
+
self.lora_B.unsqueeze(-1),
|
| 252 |
+
groups=sum(self.enable_lora)
|
| 253 |
+
).transpose(-2, -1)
|
| 254 |
+
result += self.zero_pad(after_B) * self.scaling
|
| 255 |
+
return result
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
class ConvLoRA(nn.Module, LoRALayer):
|
| 259 |
+
def __init__(self, conv_module, in_channels, out_channels, kernel_size, r=0, lora_alpha=1, lora_dropout=0., merge_weights=True, **kwargs):
|
| 260 |
+
super(ConvLoRA, self).__init__()
|
| 261 |
+
self.conv = conv_module(in_channels, out_channels, kernel_size, **kwargs)
|
| 262 |
+
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
|
| 263 |
+
assert isinstance(kernel_size, int)
|
| 264 |
+
# Actual trainable parameters
|
| 265 |
+
if r > 0:
|
| 266 |
+
self.lora_A = nn.Parameter(
|
| 267 |
+
self.conv.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
|
| 268 |
+
)
|
| 269 |
+
self.lora_B = nn.Parameter(
|
| 270 |
+
self.conv.weight.new_zeros((out_channels//self.conv.groups*kernel_size, r*kernel_size))
|
| 271 |
+
)
|
| 272 |
+
self.scaling = self.lora_alpha / self.r
|
| 273 |
+
# Freezing the pre-trained weight matrix
|
| 274 |
+
self.conv.weight.requires_grad = False
|
| 275 |
+
self.reset_parameters()
|
| 276 |
+
self.merged = False
|
| 277 |
+
|
| 278 |
+
def reset_parameters(self):
|
| 279 |
+
self.conv.reset_parameters()
|
| 280 |
+
if hasattr(self, 'lora_A'):
|
| 281 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
| 282 |
+
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
| 283 |
+
nn.init.zeros_(self.lora_B)
|
| 284 |
+
|
| 285 |
+
def train(self, mode=True):
|
| 286 |
+
super(ConvLoRA, self).train(mode)
|
| 287 |
+
if mode:
|
| 288 |
+
if self.merge_weights and self.merged:
|
| 289 |
+
# Make sure that the weights are not merged
|
| 290 |
+
self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
|
| 291 |
+
self.merged = False
|
| 292 |
+
else:
|
| 293 |
+
if self.merge_weights and not self.merged:
|
| 294 |
+
# Merge the weights and mark it
|
| 295 |
+
self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
|
| 296 |
+
self.merged = True
|
| 297 |
+
|
| 298 |
+
def forward(self, x):
|
| 299 |
+
if self.r > 0 and not self.merged:
|
| 300 |
+
return self.conv._conv_forward(
|
| 301 |
+
x,
|
| 302 |
+
self.conv.weight + (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling,
|
| 303 |
+
self.conv.bias
|
| 304 |
+
)
|
| 305 |
+
return self.conv(x)
|
| 306 |
+
|
| 307 |
+
class Conv2d(ConvLoRA):
|
| 308 |
+
def __init__(self, *args, **kwargs):
|
| 309 |
+
super(Conv2d, self).__init__(nn.Conv2d, *args, **kwargs)
|
| 310 |
+
|
| 311 |
+
class Conv1d(ConvLoRA):
|
| 312 |
+
def __init__(self, *args, **kwargs):
|
| 313 |
+
super(Conv1d, self).__init__(nn.Conv1d, *args, **kwargs)
|
| 314 |
+
|
| 315 |
+
# Can Extend to other ones like this
|
| 316 |
+
|
| 317 |
+
class Conv3d(ConvLoRA):
|
| 318 |
+
def __init__(self, *args, **kwargs):
|
| 319 |
+
super(Conv3d, self).__init__(nn.Conv3d, *args, **kwargs)
|
loralib/utils.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ------------------------------------------------------------------------------------------
|
| 2 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
| 3 |
+
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
| 4 |
+
# ------------------------------------------------------------------------------------------
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from typing import Dict
|
| 9 |
+
|
| 10 |
+
from .layers import LoRALayer
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def mark_only_lora_as_trainable(model: nn.Module, bias: str = 'none') -> None:
|
| 14 |
+
for n, p in model.named_parameters():
|
| 15 |
+
if 'lora_' not in n:
|
| 16 |
+
p.requires_grad = False
|
| 17 |
+
if bias == 'none':
|
| 18 |
+
return
|
| 19 |
+
elif bias == 'all':
|
| 20 |
+
for n, p in model.named_parameters():
|
| 21 |
+
if 'bias' in n:
|
| 22 |
+
p.requires_grad = True
|
| 23 |
+
elif bias == 'lora_only':
|
| 24 |
+
for m in model.modules():
|
| 25 |
+
if isinstance(m, LoRALayer) and \
|
| 26 |
+
hasattr(m, 'bias') and \
|
| 27 |
+
m.bias is not None:
|
| 28 |
+
m.bias.requires_grad = True
|
| 29 |
+
else:
|
| 30 |
+
raise NotImplementedError
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def lora_state_dict(model: nn.Module, bias: str = 'none') -> Dict[str, torch.Tensor]:
|
| 34 |
+
my_state_dict = model.state_dict()
|
| 35 |
+
if bias == 'none':
|
| 36 |
+
return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k}
|
| 37 |
+
elif bias == 'all':
|
| 38 |
+
return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k or 'bias' in k}
|
| 39 |
+
elif bias == 'lora_only':
|
| 40 |
+
to_return = {}
|
| 41 |
+
for k in my_state_dict:
|
| 42 |
+
if 'lora_' in k:
|
| 43 |
+
to_return[k] = my_state_dict[k]
|
| 44 |
+
bias_name = k.split('lora_')[0]+'bias'
|
| 45 |
+
if bias_name in my_state_dict:
|
| 46 |
+
to_return[bias_name] = my_state_dict[bias_name]
|
| 47 |
+
return to_return
|
| 48 |
+
else:
|
| 49 |
+
raise NotImplementedError
|
setup.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import setuptools
|
| 2 |
+
|
| 3 |
+
with open("README.md", "r", encoding="utf-8") as fh:
|
| 4 |
+
long_description = fh.read()
|
| 5 |
+
|
| 6 |
+
setuptools.setup(
|
| 7 |
+
name="loralib",
|
| 8 |
+
version="0.1.0",
|
| 9 |
+
author="Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen",
|
| 10 |
+
author_email="[email protected]",
|
| 11 |
+
description="PyTorch implementation of low-rank adaptation (LoRA), a parameter-efficient approach to adapt a large pre-trained deep learning model which obtains performance on-par with full fine-tuning.",
|
| 12 |
+
long_description=long_description,
|
| 13 |
+
long_description_content_type="text/markdown",
|
| 14 |
+
url="https://github.com/microsoft/LoRA",
|
| 15 |
+
packages=setuptools.find_packages(),
|
| 16 |
+
classifiers=[
|
| 17 |
+
"Programming Language :: Python :: 3",
|
| 18 |
+
"License :: OSI Approved :: MIT License",
|
| 19 |
+
"Operating System :: OS Independent",
|
| 20 |
+
],
|
| 21 |
+
python_requires='>=3.6',
|
| 22 |
+
)
|