--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test-ner results: [] --- # test-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0585 - Precision: 0.8389 - Recall: 0.8739 - F1: 0.8560 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 229 | 0.0617 | 0.7850 | 0.8498 | 0.8161 | 0.9813 | | No log | 2.0 | 458 | 0.0542 | 0.8191 | 0.8693 | 0.8435 | 0.9839 | | 0.0618 | 3.0 | 687 | 0.0585 | 0.8389 | 0.8739 | 0.8560 | 0.9857 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.1+cu118 - Datasets 2.9.0 - Tokenizers 0.13.3