File size: 6,915 Bytes
f4d2177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from __future__ import print_function
import os
import cv2
import numpy as np
import random

import torch
from torch.utils import data
from torchvision import transforms
import torch.nn.functional as F

def cassini2Equirec(cassini):
  if cassini.ndim == 2:
    cassini = np.expand_dims(cassini, axis=-1)
    source_image = torch.FloatTensor(cassini).unsqueeze(0).transpose(1, 3).transpose(2, 3)
  elif cassini.ndim == 3:
    source_image = torch.FloatTensor(cassini).unsqueeze(0).transpose(1, 3).transpose(2, 3)
  else:
    source_image = cassini

  erp_h = source_image.shape[-1]
  erp_w = source_image.shape[-2]

  theta_erp_start = np.pi - (np.pi / erp_w)
  theta_erp_end = -np.pi
  theta_erp_step = 2 * np.pi / erp_w
  theta_erp_range = np.arange(theta_erp_start, theta_erp_end, -theta_erp_step)
  theta_erp_map = np.array([theta_erp_range for i in range(erp_h)]).astype(np.float32)

  phi_erp_start = 0.5 * np.pi - (0.5 * np.pi / erp_h)
  phi_erp_end = -0.5 * np.pi
  phi_erp_step = np.pi / erp_h
  phi_erp_range = np.arange(phi_erp_start, phi_erp_end, -phi_erp_step)
  phi_erp_map = np.array([phi_erp_range for j in range(erp_w)]).astype(np.float32).T

  theta_cassini_map = np.arctan2(np.tan(phi_erp_map), np.cos(theta_erp_map))
  phi_cassini_map = np.arcsin(np.cos(phi_erp_map) * np.sin(theta_erp_map))

  grid_x = torch.FloatTensor(np.clip(-phi_cassini_map / (0.5 * np.pi), -1, 1)).unsqueeze(-1)
  grid_y = torch.FloatTensor(np.clip(-theta_cassini_map / np.pi, -1, 1)).unsqueeze(-1)
  grid = torch.cat([grid_x, grid_y], dim=-1).unsqueeze(0).repeat_interleave(source_image.shape[0], dim=0)

  sampled_image = F.grid_sample(source_image, grid, mode='bilinear', align_corners=True, padding_mode='border')  # 1, ch, self.output_h, self.output_w

  if cassini.ndim == 3:
    erp = sampled_image.transpose(1, 3).transpose(1, 2).data.numpy()[0].astype(cassini.dtype)
    return erp.squeeze()
  else:
    erp = sampled_image.numpy()
    return erp.squeeze(1)


def read_list(list_file):
    rgb_depth_list = []
    with open(list_file) as f:
        lines = f.readlines()
        for line in lines:
            rgb_depth_list.append(line.strip().split(" "))
    return rgb_depth_list


class Deep360(data.Dataset):
    """The Deep360 Dataset"""

    def __init__(self, root_dir, list_file, height=504, width=1008, color_augmentation=True,
                 LR_filp_augmentation=True, yaw_rotation_augmentation=True, repeat=1, is_training=False):
        """
        Args:
            root_dir (string): Directory of the Deep360 Dataset.
            list_file (string): Path to the txt file contain the list of image and depth files.
            height, width: input size.
            disable_color_augmentation, disable_LR_filp_augmentation,
            disable_yaw_rotation_augmentation: augmentation options.
            is_training (bool): True if the dataset is the training set.
        """
        self.root_dir = root_dir
        self.rgb_depth_list = read_list(list_file)

        self.w = width
        self.h = height

        self.max_depth_meters = 100.0
        self.min_depth_meters = 0.01

        self.color_augmentation = color_augmentation
        self.LR_filp_augmentation = LR_filp_augmentation
        self.yaw_rotation_augmentation = yaw_rotation_augmentation

        self.is_training = is_training

        if self.color_augmentation:
            try:
                self.brightness = (0.8, 1.2)
                self.contrast = (0.8, 1.2)
                self.saturation = (0.8, 1.2)
                self.hue = (-0.1, 0.1)
                self.color_aug= transforms.ColorJitter(
                    self.brightness, self.contrast, self.saturation, self.hue)
            except TypeError:
                self.brightness = 0.2
                self.contrast = 0.2
                self.saturation = 0.2
                self.hue = 0.1
                self.color_aug = transforms.ColorJitter(
                    self.brightness, self.contrast, self.saturation, self.hue)

        self.to_tensor = transforms.ToTensor()
        self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

    def __len__(self):
        return len(self.rgb_depth_list)

    def __getitem__(self, idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()

        inputs = {}

        rgb_name = self.root_dir + self.rgb_depth_list[idx][0]
        rgb = cv2.imread(rgb_name)
        if rgb is None:
            print(rgb_name)
        rgb = cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)
        # print(rgb.shape)
        rgb = cassini2Equirec(rgb)
        rgb = cv2.resize(rgb, dsize=(self.w, self.h), interpolation=cv2.INTER_CUBIC)
        
        depth_name = self.root_dir + self.rgb_depth_list[idx][1]
        gt_depth = np.load(depth_name)['arr_0'].astype(np.float32)
        gt_depth = cassini2Equirec(gt_depth)
        gt_depth = cv2.resize(gt_depth, dsize=(self.w, self.h), interpolation=cv2.INTER_NEAREST)
        gt_depth[gt_depth > self.max_depth_meters] = self.max_depth_meters


      

        if self.is_training and self.yaw_rotation_augmentation:
            # random yaw rotation
            roll_idx = random.randint(0, self.w)
            rgb = np.roll(rgb, roll_idx, 1)
            gt_depth = np.roll(gt_depth, roll_idx, 1)

        if self.is_training and self.LR_filp_augmentation and random.random() > 0.5:
            rgb = cv2.flip(rgb, 1)
            gt_depth = cv2.flip(gt_depth, 1)

        if self.is_training and self.color_augmentation and random.random() > 0.5:
            aug_rgb = np.asarray(self.color_aug(transforms.ToPILImage()(rgb)))
        else:
            aug_rgb = rgb.copy()

        aug_rgb = self.to_tensor(aug_rgb.copy())

        gt_depth = torch.from_numpy(np.expand_dims(gt_depth, axis=0)).to(torch.float32)

        val_mask = ((gt_depth > 0) & (gt_depth <= self.max_depth_meters) & ~torch.isnan(gt_depth))

        mask_100 = (gt_depth < 100.0)
        # Normalize depth
        # _min, _max = torch.quantile(gt_depth[val_mask], torch.tensor([0.02, 1 - 0.02]),)
        # gt_depth_norm = (gt_depth - 0.01) / (_max - 0.01)
        # gt_depth_norm = torch.clip(gt_depth_norm, 0.01, 1.0)
        
        gt_depth_norm = gt_depth / self.max_depth_meters
        gt_depth_norm = torch.clip(gt_depth_norm, 0.001, 1.0)
        

        # Conduct output
        inputs = {}

        inputs["rgb"] = self.normalize(aug_rgb)
        inputs["gt_depth"] = gt_depth_norm
        inputs["val_mask"] = val_mask
        inputs["mask_100"] = mask_100
        inputs["touying"] = False
        # inputs["moge_depth"] = moge_depth

        return inputs
    
if __name__ == "__main__":
    dataset = Deep360(root_dir='/hpc2hdd/home/zcao740/Documents/Dataset/Deep360', list_file='/hpc2hdd/home/zcao740/Documents/360Depth/Semi-supervision/datasets/deep360_train.txt')
    print(len(dataset))
    for i in range(2):
        print(dataset[i])