--- library_name: transformers tags: - text-classification - modernbert - generated-data base_model: answerdotai/ModernBERT-base metrics: - name: loss type: loss value: 0.29229435324668884 - name: accuracy type: accuracy value: 0.933 - name: f1 type: f1 value: 0.9326350161439921 - name: precision type: precision value: 0.9331578016546898 - name: recall type: recall value: 0.9331665056860711 - name: runtime type: runtime value: 27.4919 - name: samples_per_second type: samples_per_second value: 218.246 - name: steps_per_second type: steps_per_second value: 3.419 - name: epoch type: epoch value: 3.0 --- # Gender Classifier (Fine-tuned answerdotai/ModernBERT-base) This model was fine-tuned to classify text into: male, female, neutral ## Performance Metrics | Metric | Value | | :--- | :--- | | **loss** | 0.2923 | | **accuracy** | 0.9330 | | **f1** | 0.9326 | | **precision** | 0.9332 | | **recall** | 0.9332 | | **runtime** | 27.4919 | | **samples_per_second** | 218.2460 | | **steps_per_second** | 3.4190 | | **epoch** | 3.0000 | ## Hyperparameters - **Batch Size**: 64 - **Learning Rate**: 5e-05 - **Epochs**: 3 - **Weight Decay**: 0.01 - **Mixed Precision (FP16)**: True ## Quick Usage ```python from transformers import pipeline # Load the model directly from this folder or HF Hub classifier = pipeline('text-classification', model='.') print(classifier('She is a great engineer.')) ```