File size: 9,685 Bytes
90bc49a 6a4cfc1 4e3059a c1d92a7 4e3059a 0b0237d 4e3059a 3f7c225 90bc49a c2a185c 4238759 21e5758 c2a185c 90bc49a 21e5758 90bc49a d1f492d 90bc49a d6d657d 90bc49a 753c6fe 90bc49a ce10917 90bc49a 53471ec 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a d1f492d 90bc49a 53471ec 1a8a44b 53471ec 90bc49a bd85f7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
---
license: apache-2.0
datasets:
- HIT-TMG/KaLM-embedding-pretrain-data
- KaLM-Embedding/KaLM-embedding-finetuning-data
language:
- en
- zh
base_model:
- Qwen/Qwen2.5-0.5B
- HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v2
pipeline_tag: feature-extraction
library_name: sentence-transformers
tags:
- Retrieval
- STS
- Classification
- Clustering
- Reranking
- vllm
---
<!-- <p align="center">
<img src="imgs/logo.jpg" width="800"/>
<p>
-->
<h1 align="center">KaLM-Embedding-V2.5</h1>
<p align="center">
<a href="https://huggingface.co/KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5">
<img src="https://img.shields.io/badge/%F0%9F%A4%97_HuggingFace-Model-ffbd45.svg" alt="HuggingFace">
</a>
<a href="https://huggingface.co/spaces/nazib61/qdarnt">
<img src="https://img.shields.io/badge/%F0%9F%A4%97_HuggingFace-Demo-90EE90?style=flat" alt="Demo">
</a>
<a href="https://github.com/HITsz-TMG/KaLM-Embedding">
<img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub Code">
</a>
<a href="https://arxiv.org/abs/2506.20923">
<img src="https://img.shields.io/badge/Paper-KaLM--Embedding-d4333f?logo=arxiv&logoColor=white&colorA=cccccc&colorB=d4333f&style=flat" alt="Paper">
</a>
</p>
## Short Description
**KaLM-Embedding-V2.5** is a versatile and compact embedding model, which achieves SOTA performance among models of comparable size and competes with models 3–26x larger by leveraging superior training techniques and data.

## Model Details
- Model Size: 0.5B
- Embedding Dimension: 896
- Max Input Tokens: 32k
- MRL dimensions: 896, 512, 256, 128, and 64
- Attn: Bidirectional attention
- Pooling: Mean pooling

## Training Recipe
- Large-scale weakly supervised pretraining
- High-quality supervised finetuning
- Contrastive distillation with fine-grained soft labels
Additionally, focal-style sample reweighting and online hard-negative mixing are employed to emphasize difficult samples and enrich hard negatives.
## 📑 Open-source Plan
- [x] Model Checkpoint
- [x] [KaLM-embedding-multilingual-mini-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-v1)
- [x] [KaLM-embedding-multilingual-mini-instruct-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1)
- [x] [KaLM-embedding-multilingual-mini-instruct-v1.5](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5)
- [x] [KaLM-embedding-multilingual-mini-instruct-v2](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v2)
- [x] [KaLM-embedding-multilingual-mini-instruct-v2.5](https://huggingface.co/KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5)
- [x] [KaLM-Embedding-Gemma3-12B-2511](https://huggingface.co/tencent/KaLM-Embedding-Gemma3-12B-2511)
- [x] Training and Evaluation Code: [HITsz-TMG/KaLM-Embedding](https://github.com/HITsz-TMG/KaLM-Embedding)
- [x] Technical Report: [KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model](https://arxiv.org/abs/2506.20923v4)
- [x] Pre-training Data: [Pre-training Data](https://huggingface.co/datasets/HIT-TMG/KaLM-embedding-pretrain-data)
- [x] Fine-tuning Data: [Fine-tuning Data](https://huggingface.co/datasets/KaLM-Embedding/KaLM-embedding-finetuning-data)
## Evaluation
### Overall results on MTEB (cmn, v1) and MTEB (eng, v1).

### Detailed model performance on MTEB (cmn, v1).

### Detailed model performance on MTEB (eng, v1).

### OOD evaluation: KaLM-Embedding-V2.5 exhibits strong OOD generalization, competing with the 15x larger model in real-world retrieval scenarios.

### Matryoshka embedding evaluation: KaLM-Embedding-V2.5 maintains robust performance with matryoshka embeddings even at smaller dimensions.

## Requirements
Since we have used the Qwen2 model, we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
```
KeyError: 'qwen2'
```
## Usage
### sentence-transformers support
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
import torch
model = SentenceTransformer(
"KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
trust_remote_code=True,
model_kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2", # Optional
},
)
model.max_seq_length = 512
sentences = ["This is an example sentence", "Each sentence is converted"]
embeddings = model.encode(
sentences,
normalize_embeddings=True,
batch_size=256,
show_progress_bar=True,
)
print(embeddings)
'''
[[-0.01043701 -0.02172852 0.0100708 ... -0.02807617 0.00157166
-0.03637695]
[-0.00424194 0.02966309 0.03686523 ... -0.02587891 0.01953125
-0.00125122]]
'''
```
We add task instructions for asymmetric tasks: retrieval, reranking, classification, and clustering.
And, we add task instructions for both queries and passages in symmetric tasks, including STS and pair classification.
If you want to add task instructions to the query, you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
import torch
model = SentenceTransformer(
"KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
trust_remote_code=True,
model_kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2", # Optional
},
)
model.max_seq_length = 512
sentences = ["This is an example sentence", "Each sentence is converted"]
prompt = "Instruct: Classifying the category of french news.\nQuery:"
embeddings = model.encode(
sentences,
prompt=prompt,
normalize_embeddings=True,
batch_size=256,
show_progress_bar=True,
)
print(embeddings)
'''
[[-0.01867676 0.02319336 0.00280762 ... -0.02075195 0.00196838
-0.0703125 ]
[-0.0067749 0.03491211 0.01434326 ... -0.0043335 0.00509644
-0.04174805]]
'''
```
Or you can use `encode_query` and `encode_document` to automatically add the default prompt for queries (`"Instruct: Given a query, retrieve documents that answer the query \n Query: "`) and documents (`""`), respectively.
```python
from sentence_transformers import SentenceTransformer
import torch
model = SentenceTransformer(
"KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5",
trust_remote_code=True,
model_kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2", # Optional
},
)
model.max_seq_length = 512
queries = [
"What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
'''
tensor([[0.9034, 0.2563],
[0.3153, 0.7396]])
'''
```
### vllm support
```
pip install -U vllm==0.8.5
```
```python
import torch
import vllm
from vllm import LLM
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery:{query}'
task = 'Given a query, retrieve documents that answer the query'
queries = [
get_detailed_instruct(task, 'What is the capital of China?'),
get_detailed_instruct(task, 'Explain gravity')
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun."
]
input_texts = queries + documents
model = LLM(model="{MODEL_NAME_OR_PATH}", task="embed", trust_remote_code=True, dtype="float16")
outputs = model.embed(input_texts)
embeddings = torch.tensor([o.outputs.embedding for o in outputs])
scores = (embeddings[:2] @ embeddings[2:].T)
print(scores.tolist())
```
## Citation
If you find this model useful, please consider giving a star and citation.
```
@misc{zhao2025kalmembeddingv2,
title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model},
author={Xinping Zhao and Xinshuo Hu and Zifei Shan and Shouzheng Huang and Yao Zhou and Xin Zhang and Zetian Sun and Zhenyu Liu and Dongfang Li and Xinyuan Wei and Youcheng Pan and Yang Xiang and Meishan Zhang and Haofen Wang and Jun Yu and Baotian Hu and Min Zhang},
year={2025},
eprint={2506.20923},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2506.20923},
}
@misc{hu2025kalmembedding,
title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model},
author={Xinshuo Hu and Zifei Shan and Xinping Zhao and Zetian Sun and Zhenyu Liu and Dongfang Li and Shaolin Ye and Xinyuan Wei and Qian Chen and Baotian Hu and Haofen Wang and Jun Yu and Min Zhang},
year={2025},
eprint={2501.01028},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.01028},
}
```
## Contact
If you encounter any issue, feel free to contact us via the email: <[email protected]>, <[email protected]> |