=
commited on
Commit
·
391f8df
1
Parent(s):
459b89f
add injection
Browse files- utils/comp_two_files.py +75 -0
- utils/paraProcess.py +80 -0
- utils/paraShow.py +163 -0
- utils/swin.py +298 -0
utils/comp_two_files.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from bitstring import BitArray
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def compare_bits(file1, file2, max_diff_display=20):
|
| 5 |
+
"""
|
| 6 |
+
比较两个文件的bit级差异
|
| 7 |
+
:param file1: 第一个文件路径
|
| 8 |
+
:param file2: 第二个文件路径
|
| 9 |
+
:param max_diff_display: 最大差异位置显示数量
|
| 10 |
+
:return: 差异统计字典
|
| 11 |
+
"""
|
| 12 |
+
# 读取文件并转换为bit数组
|
| 13 |
+
bits1 = BitArray(filename=file1)
|
| 14 |
+
bits2 = BitArray(filename=file2)
|
| 15 |
+
|
| 16 |
+
# 获取bit长度
|
| 17 |
+
len1, len2 = len(bits1), len(bits2)
|
| 18 |
+
min_len = min(len1, len2)
|
| 19 |
+
|
| 20 |
+
# 统计结果
|
| 21 |
+
diff_stats = {
|
| 22 |
+
'total_bits_file1': len1,
|
| 23 |
+
'total_bits_file2': len2,
|
| 24 |
+
'differing_bits': 0,
|
| 25 |
+
'diff_positions': [],
|
| 26 |
+
'bit_length_mismatch': len1 != len2
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
# 逐bit比较
|
| 30 |
+
for i in range(min_len):
|
| 31 |
+
if bits1[i] != bits2[i]:
|
| 32 |
+
diff_stats['differing_bits'] += 1
|
| 33 |
+
if len(diff_stats['diff_positions']) < max_diff_display:
|
| 34 |
+
diff_stats['diff_positions'].append(i)
|
| 35 |
+
|
| 36 |
+
# 处理长度不一致的情况
|
| 37 |
+
if len1 != len2:
|
| 38 |
+
diff_stats['extra_bits'] = abs(len1 - len2)
|
| 39 |
+
else:
|
| 40 |
+
diff_stats['extra_bits'] = 0
|
| 41 |
+
|
| 42 |
+
return diff_stats
|
| 43 |
+
|
| 44 |
+
def print_diff_report(diff_stats):
|
| 45 |
+
"""打印差异报告"""
|
| 46 |
+
print(f"Bit长度比较:")
|
| 47 |
+
print(f" File1: {diff_stats['total_bits_file1']} bits")
|
| 48 |
+
print(f" File2: {diff_stats['total_bits_file2']} bits")
|
| 49 |
+
|
| 50 |
+
if diff_stats['bit_length_mismatch']:
|
| 51 |
+
print(f"\n! 文件长度不一致,相差 {diff_stats['extra_bits']} bits")
|
| 52 |
+
|
| 53 |
+
print(f"\n差异bit总数: {diff_stats['differing_bits']}")
|
| 54 |
+
|
| 55 |
+
if diff_stats['differing_bits'] > 0:
|
| 56 |
+
print(f"\n前 {len(diff_stats['diff_positions'])} 个差异位置 (0-based):")
|
| 57 |
+
for pos in diff_stats['diff_positions']:
|
| 58 |
+
print(f" Bit位置 {pos}")
|
| 59 |
+
|
| 60 |
+
if __name__ == "__main__":
|
| 61 |
+
# 使用示例
|
| 62 |
+
file1 = "../malwares/generated_malware"
|
| 63 |
+
file2 = "../malwares/generated_malware_extracted"
|
| 64 |
+
|
| 65 |
+
# 比较文件
|
| 66 |
+
diff_stats = compare_bits(file1, file2)
|
| 67 |
+
|
| 68 |
+
# 打印报告
|
| 69 |
+
print_diff_report(diff_stats)
|
| 70 |
+
|
| 71 |
+
# 高级用法:直接访问差异数据
|
| 72 |
+
print("\n高级访问:")
|
| 73 |
+
print(f"总差异bit数: {diff_stats['differing_bits']}")
|
| 74 |
+
if diff_stats['differing_bits'] > 0:
|
| 75 |
+
print(f"第一个差异位置: {diff_stats['diff_positions'][0]}")
|
utils/paraProcess.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
处理参数,如参数翻转、参数替换等等
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import random
|
| 7 |
+
import struct
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from bitstring import BitArray
|
| 10 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 11 |
+
import numpy as np
|
| 12 |
+
import math
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def split_file(file_path, chunk_size=8):
|
| 16 |
+
"""
|
| 17 |
+
分割源文件成为元素BitArray的list
|
| 18 |
+
:param file_path: 源文件路径
|
| 19 |
+
:param chunk_size: 分割粒度 Bit
|
| 20 |
+
:return: 返回一个元素BitArray的list
|
| 21 |
+
"""
|
| 22 |
+
# 以bit的形式读取文件
|
| 23 |
+
bit_data = BitArray(filename = file_path)
|
| 24 |
+
chunks = [bit_data[i:i+chunk_size] for i in range(0, len(bit_data), chunk_size)]
|
| 25 |
+
return chunks
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def merge_file(output_file, chunks):
|
| 29 |
+
"""
|
| 30 |
+
将BitArray的list合并成一个文件
|
| 31 |
+
:param output_file: 目标文件路径
|
| 32 |
+
:param chunks: BitArray的list
|
| 33 |
+
:return: 合并后的文件
|
| 34 |
+
"""
|
| 35 |
+
merge_data = BitArray()
|
| 36 |
+
for chunk in chunks:
|
| 37 |
+
merge_data.append(chunk)
|
| 38 |
+
|
| 39 |
+
with open(output_file, 'wb') as file:
|
| 40 |
+
merge_data.tofile(file)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def layer_low_n_bit_fLip(initParaPath, flipParaPath, bit_n, *layers):
|
| 45 |
+
"""
|
| 46 |
+
翻转pth的layers层fa的低n bit
|
| 47 |
+
:param initParaPath: 原始参数pth
|
| 48 |
+
:param flipParaPath: 翻转之后的参数pth
|
| 49 |
+
:param bit_n: 翻转低多少bit
|
| 50 |
+
:return: void
|
| 51 |
+
"""
|
| 52 |
+
para = torch.load(initParaPath)
|
| 53 |
+
|
| 54 |
+
for layer in layers: # layers数组中的所有layer
|
| 55 |
+
if len(para[layer].data.shape) < 1:
|
| 56 |
+
continue # 单值除去
|
| 57 |
+
# print(layer, type(layer))
|
| 58 |
+
layerTensor = para[layer].data
|
| 59 |
+
# print(layerTensor.shape)
|
| 60 |
+
layerTensor_initView = layerTensor.view(torch.int32)
|
| 61 |
+
# print(format(layerTensor_initView[0][0][0][0], '032b'), layerTensor[0][0][0][0])
|
| 62 |
+
layerTensor_embedded_int = layerTensor_initView ^ bit_n
|
| 63 |
+
layerTensor_embedded = layerTensor_embedded_int.view(torch.float32)
|
| 64 |
+
# print(format(layerTensor_embedded_int[0][0][0][0], '032b'), layerTensor_embedded[0][0][0][0])
|
| 65 |
+
|
| 66 |
+
para[layer].data = layerTensor_embedded
|
| 67 |
+
|
| 68 |
+
torch.save(para, flipParaPath)
|
| 69 |
+
return
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
|
| 80 |
+
print("Test Done")
|
utils/paraShow.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
展示参数分布、属性
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import random
|
| 7 |
+
import struct
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from bitstring import BitArray
|
| 10 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 11 |
+
import numpy as np
|
| 12 |
+
import math
|
| 13 |
+
|
| 14 |
+
from numpy.ma.core import shape
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def showDif(file1, file2):
|
| 18 |
+
"""
|
| 19 |
+
对比提取的恶意软件和原始恶意软件的区别,返回出错的bit
|
| 20 |
+
:return:
|
| 21 |
+
"""
|
| 22 |
+
malwareStr1 = BitArray(filename=file1).bin
|
| 23 |
+
malwareStr2 = BitArray(filename=file2).bin
|
| 24 |
+
diffNum = 0
|
| 25 |
+
if malwareStr1 != malwareStr2:
|
| 26 |
+
print("两个恶意软件大小不同,第一个Bit数为:", malwareStr1, " 第二个Bit数为:", malwareStr1)
|
| 27 |
+
return
|
| 28 |
+
for i in range(len(malwareStr1)):
|
| 29 |
+
if malwareStr1[i] != malwareStr2[i]: # 打印出所有不同的bit的位置
|
| 30 |
+
print("pos:", i, "initBit:", malwareStr1[i], "extractedBit:", malwareStr2[i])
|
| 31 |
+
diffNum += 1
|
| 32 |
+
# print(malwareStr1)
|
| 33 |
+
# print(malwareStr2)
|
| 34 |
+
print("different bit Num between the two files: ", diffNum)
|
| 35 |
+
return diffNum
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_file_bit_num(file_path):
|
| 39 |
+
"""
|
| 40 |
+
通过文件路径,获得文件bit数
|
| 41 |
+
"""
|
| 42 |
+
return os.path.getSize(file_path) * 8
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def getExpEmbeddSize(initParaPath, layers, interval=1, correct=1):
|
| 46 |
+
"""
|
| 47 |
+
返回指数部分最大的嵌入容量,单位是字节Byte
|
| 48 |
+
:param initParaPath:
|
| 49 |
+
:param layers: list
|
| 50 |
+
:param interval: 每interval个中嵌入一个
|
| 51 |
+
:return: list
|
| 52 |
+
"""
|
| 53 |
+
para = torch.load(initParaPath, map_location=torch.device("cpu"))
|
| 54 |
+
ret = []
|
| 55 |
+
for layer in layers:
|
| 56 |
+
paraTensor = para[layer].data
|
| 57 |
+
paraTensor_flat = paraTensor.flatten()
|
| 58 |
+
# print(initParaPath, layers, paraTensor_flat.size())
|
| 59 |
+
layerSize = len(paraTensor_flat) // (interval * correct * 8)
|
| 60 |
+
# print(layer, len(paraTensor_flat), layerSize)
|
| 61 |
+
ret.append(layerSize)
|
| 62 |
+
return ret
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def generate_file_with_bits(file_path, num_bits):
|
| 66 |
+
"""
|
| 67 |
+
根据需要多少bit,随机生成对应大小的恶意软件
|
| 68 |
+
:param file_path:
|
| 69 |
+
:param num_bits:
|
| 70 |
+
:return:
|
| 71 |
+
"""
|
| 72 |
+
# 计算需要的字节数,每字节有8个bit
|
| 73 |
+
num_bytes = (num_bits + 7) // 8 # 向上取整,保证比特数足够
|
| 74 |
+
print("Byte Num:", num_bytes)
|
| 75 |
+
|
| 76 |
+
# 创建一个包含随机字节的字节数组
|
| 77 |
+
byte_array = bytearray(random.getrandbits(8) for _ in range(num_bytes))
|
| 78 |
+
|
| 79 |
+
# 如果不需要最后一个字节的全部位,将多余的位清零
|
| 80 |
+
if num_bits % 8 != 0:
|
| 81 |
+
last_byte_bits = num_bits % 8
|
| 82 |
+
# 保留最后字节所需的位数,其它位清零
|
| 83 |
+
mask = (1 << last_byte_bits) - 1
|
| 84 |
+
byte_array[-1] &= mask
|
| 85 |
+
|
| 86 |
+
# 将字节数组写入文件
|
| 87 |
+
with open(file_path, 'wb') as f:
|
| 88 |
+
f.write(byte_array)
|
| 89 |
+
|
| 90 |
+
print(f"File '{file_path}' generated with {num_bits} bits.")
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
if __name__ == "__main__":
|
| 99 |
+
"""测试路径"""
|
| 100 |
+
path_swin = "../parameters/classification/swin/swin_b.pth"
|
| 101 |
+
path_yolo = "../parameters/detection/yolov10/yolov10b.pt"
|
| 102 |
+
path_rt = "../parameters/detection/rt_dert/rt.pth"
|
| 103 |
+
path_sam = "../parameters/segmentation/samv2/sam.pth"
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
"""测试swin"""
|
| 109 |
+
# swin_keys = torch.load(path_swin).keys()
|
| 110 |
+
# print(type(torch.load(path_swin)))
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
pth_keys = torch.load(path_yolo)
|
| 116 |
+
print(pth_keys.keys())
|
| 117 |
+
print(type(pth_keys['model'].model.named_modules()))
|
| 118 |
+
print(pth_keys['model'].model.named_modules())
|
| 119 |
+
# for idx, layer in enumerate(pth_keys['model'].model):
|
| 120 |
+
# print(f"层 {idx}: {layer}")
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
# 遍历模型中所有的子模块(包括嵌套层)
|
| 124 |
+
for idx, (name, module) in enumerate(pth_keys['model'].model.named_modules()):
|
| 125 |
+
print(f"模块索引 {idx} - 名称 {name}: {module}")
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# print((pth_keys['model'].model[23].cv2[0]))
|
| 134 |
+
# print((pth_keys['model']))
|
| 135 |
+
# print(len(pth_keys['model'].model.conv.weight))
|
| 136 |
+
# print(type(pth_keys['model'].model[1]))
|
| 137 |
+
# print(type(pth_keys['model'].model[0].conv.weight))
|
| 138 |
+
# print(type(pth_keys['model'].model[0].conv.weight.data))
|
| 139 |
+
# print(shape(pth_keys['model'].model[0].conv.weight.data))
|
| 140 |
+
# print(pth_keys['model'].model[0].conv.weight.data[0][0][0][0].dtype)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# path3 = "../parameters/detection/rt_dert/rt.pth"
|
| 145 |
+
# a = torch.load(path3)
|
| 146 |
+
# print(a['ema'].keys())
|
| 147 |
+
# print(a['ema']['module']['backbone.conv1.conv1_1.conv.weight'][0][0][0][0].dtype)
|
| 148 |
+
#
|
| 149 |
+
# path4 = "../parameters/segmentation/samv2/sam.pth"
|
| 150 |
+
# b = torch.load(path4)
|
| 151 |
+
# print(b.keys())
|
| 152 |
+
# print(b['image_encoder.neck.0.weight'][0][0][0][0].dtype)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# print(get_file_bit_num(path1))
|
| 158 |
+
|
| 159 |
+
# print(pth_keys['train_args'])
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
print("Test Done")
|
| 163 |
+
|
utils/swin.py
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import random
|
| 4 |
+
from bitstring import BitArray
|
| 5 |
+
|
| 6 |
+
# from utils import generate_file_with_bits, showDif
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def generate_file_with_bits(file_path, num_bits):
|
| 11 |
+
"""
|
| 12 |
+
根据需要多少bit,随机生成对应大小的恶意软件
|
| 13 |
+
:param file_path:
|
| 14 |
+
:param num_bits:
|
| 15 |
+
:return:
|
| 16 |
+
"""
|
| 17 |
+
# 计算需要的字节数,每字节有8个bit
|
| 18 |
+
num_bytes = (num_bits + 7) // 8 # 向上取整,保证比特数足够
|
| 19 |
+
print("Byte Num:", num_bytes)
|
| 20 |
+
|
| 21 |
+
# 创建一个包含随机字节的字节数组
|
| 22 |
+
byte_array = bytearray(random.getrandbits(8) for _ in range(num_bytes))
|
| 23 |
+
|
| 24 |
+
# 如果不需要最后一个字节的全部位,将多余的位清零
|
| 25 |
+
if num_bits % 8 != 0:
|
| 26 |
+
last_byte_bits = num_bits % 8
|
| 27 |
+
# 保留最后字节所需的位数,其它位清零
|
| 28 |
+
mask = (1 << last_byte_bits) - 1
|
| 29 |
+
byte_array[-1] &= mask
|
| 30 |
+
|
| 31 |
+
# 将字节数组写入文件
|
| 32 |
+
with open(file_path, 'wb') as f:
|
| 33 |
+
f.write(byte_array)
|
| 34 |
+
|
| 35 |
+
print(f"File '{file_path}' generated with {num_bits} bits.")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class swin:
|
| 41 |
+
def __init__(self, path):
|
| 42 |
+
"""
|
| 43 |
+
初始化使用参数的路径进行初始化
|
| 44 |
+
:param path:
|
| 45 |
+
"""
|
| 46 |
+
self.path = path
|
| 47 |
+
return
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_pth_keys(self):
|
| 51 |
+
"""
|
| 52 |
+
返回参数的key
|
| 53 |
+
:param paraPath: 待获得的参数pth
|
| 54 |
+
:return:
|
| 55 |
+
"""
|
| 56 |
+
return torch.load(self.path, map_location=torch.device("cpu")).keys()
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def get_pth_keys_float32(self):
|
| 60 |
+
"""
|
| 61 |
+
返回参数的key
|
| 62 |
+
:param paraPath: 待获得的参数pth
|
| 63 |
+
:return:
|
| 64 |
+
"""
|
| 65 |
+
para = torch.load(self.path, map_location=torch.device("cpu"))
|
| 66 |
+
temp = para.keys()
|
| 67 |
+
layers = []
|
| 68 |
+
for i in temp:
|
| 69 |
+
if para[i].data.dtype == torch.float32:
|
| 70 |
+
layers.append(i)
|
| 71 |
+
return layers
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def get_file_bit_num(self):
|
| 75 |
+
"""
|
| 76 |
+
通过文件路径,获得文件bit数
|
| 77 |
+
:return: bit size
|
| 78 |
+
"""
|
| 79 |
+
return os.path.getSize(self.path) * 8
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def layer_low_n_bit_fLip(self, flip_path, bit_n, *layers):
|
| 83 |
+
"""
|
| 84 |
+
翻转pth的layers层的低n bit
|
| 85 |
+
:param flip_path: 翻转之后的参数pth
|
| 86 |
+
:param bit_n: 翻转低多少bit
|
| 87 |
+
:return: void
|
| 88 |
+
"""
|
| 89 |
+
para = torch.load(self.path)
|
| 90 |
+
mask= (1<<bit_n)-1
|
| 91 |
+
for layer in layers:
|
| 92 |
+
if len(para[layer].data.shape) < 1:
|
| 93 |
+
continue
|
| 94 |
+
layer_tensor = para[layer].data
|
| 95 |
+
# 确保 Tensor 的数据类型为浮点型
|
| 96 |
+
if layer_tensor.dtype == torch.float32:
|
| 97 |
+
# 使用整数视图来操作比特,但应谨慎操作
|
| 98 |
+
layer_tensor_view = layer_tensor.view(torch.int32)
|
| 99 |
+
layer_tensor_view ^= mask # 对低位进行翻转操作
|
| 100 |
+
para[layer].data = layer_tensor_view.view(torch.float32)
|
| 101 |
+
torch.save(para, flip_path)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def all_layers_low_n_bit_fLip(self, flip_path, bit_n):
|
| 105 |
+
"""
|
| 106 |
+
翻转所有层的低n bit,需要满足其中的数据类型是fp32
|
| 107 |
+
:param flip_path: 翻转之后的参数pth
|
| 108 |
+
:param bit_n: 翻转低多少bit
|
| 109 |
+
:return:
|
| 110 |
+
"""
|
| 111 |
+
self.layer_low_n_bit_fLip(flip_path, bit_n, *self.get_pth_keys_float32())
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def get_layers_low_n_bit_size(self, layers, bit_n):
|
| 115 |
+
"""
|
| 116 |
+
usage:
|
| 117 |
+
size, size_list = agent.get_layers_low_n_bit_size(agent.get_pth_keys(), 16)
|
| 118 |
+
返回指数部分最大的嵌入容量,单位是字节bit
|
| 119 |
+
:param layers: list
|
| 120 |
+
:param interval: 每interval个中嵌入一个
|
| 121 |
+
:return: 总大小,每一层的大小
|
| 122 |
+
"""
|
| 123 |
+
para = torch.load(self.path, map_location=torch.device("cpu"))
|
| 124 |
+
size_with_layers_list = []
|
| 125 |
+
total_size = 0
|
| 126 |
+
for layer in layers:
|
| 127 |
+
|
| 128 |
+
if para[layer].data.dtype != torch.float32:
|
| 129 |
+
continue # 只查看是float32数据类型的数值进行嵌入
|
| 130 |
+
|
| 131 |
+
paraTensor = para[layer].data
|
| 132 |
+
paraTensor_flat = paraTensor.flatten()
|
| 133 |
+
layerSize = len(paraTensor_flat) * bit_n
|
| 134 |
+
size_with_layers_list.append(layerSize)
|
| 135 |
+
total_size += layerSize
|
| 136 |
+
return total_size, size_with_layers_list
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def all_layers_low_n_bit_inject(self, inject_path, bit_n, malware, malware_len):
|
| 141 |
+
"""
|
| 142 |
+
随机生成一个软件、在所有层的低nbit进行嵌入
|
| 143 |
+
:param inject_path: 最后的嵌入pth文件
|
| 144 |
+
:param bit_n: 低nbit
|
| 145 |
+
:param malware: 需要嵌入的恶意软件
|
| 146 |
+
:param malware_len: 需要嵌入的恶意软件的长度,单位为bit
|
| 147 |
+
:return:
|
| 148 |
+
"""
|
| 149 |
+
paras = torch.load(self.path, map_location=torch.device("cpu"))
|
| 150 |
+
malware_str = BitArray(filename=malware).bin
|
| 151 |
+
mal_index = 0 # 需要访问的恶意软件的bit区间起点
|
| 152 |
+
_, size_list = self.get_layers_low_n_bit_size(self.get_pth_keys_float32(), bit_n)
|
| 153 |
+
for layer, size in zip(self.get_pth_keys_float32(), size_list):
|
| 154 |
+
if paras[layer].data.dtype != torch.float32:
|
| 155 |
+
continue # 只考虑32位浮点数
|
| 156 |
+
print(layer, size)
|
| 157 |
+
para_tensor_flat = paras[layer].flatten()
|
| 158 |
+
# index 再恶意软件中和tensor中并不是同一个!
|
| 159 |
+
print(mal_index, mal_index + size)
|
| 160 |
+
print(para_tensor_flat.size(), size//bit_n)
|
| 161 |
+
para_index = 0 # 写入的参数的位置
|
| 162 |
+
for inject_pos in range(mal_index, min(mal_index + size, malware_len), bit_n):
|
| 163 |
+
current_write_content = malware_str[inject_pos: inject_pos + bit_n] # 将n bit数据提取出来
|
| 164 |
+
para_tensor_flat_str = BitArray(int=para_tensor_flat[para_index].view(torch.int32), length=32).bin
|
| 165 |
+
new_para_tensor_flat_str = para_tensor_flat_str[:32 - bit_n] + current_write_content
|
| 166 |
+
|
| 167 |
+
if int(new_para_tensor_flat_str, 2) >= 2 ** 31:
|
| 168 |
+
newParaInt = torch.tensor(int(new_para_tensor_flat_str, 2) - 2 ** 32, dtype=torch.int32)
|
| 169 |
+
para_tensor_flat[para_index] = newParaInt.view(torch.float32)
|
| 170 |
+
else:
|
| 171 |
+
newParaInt = torch.tensor(int(new_para_tensor_flat_str, 2), dtype=torch.int32)
|
| 172 |
+
para_tensor_flat[para_index] = newParaInt.view(torch.float32)
|
| 173 |
+
para_index += 1 # 写入的位置往后推1bit
|
| 174 |
+
|
| 175 |
+
if mal_index + size >= malware_len:
|
| 176 |
+
break
|
| 177 |
+
else:
|
| 178 |
+
mal_index = mal_index + size
|
| 179 |
+
paras[layer] = para_tensor_flat.reshape(paras[layer].data.shape)
|
| 180 |
+
torch.save(paras, inject_path)
|
| 181 |
+
return
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def all_layers_low_n_bit_extract(self, inject_path, bit_n, extract_malware, malware_len):
|
| 185 |
+
"""
|
| 186 |
+
:param malware_len: 需要嵌入的恶意软件的长度,单位为bit
|
| 187 |
+
:param inject_path: 嵌入后的模型参数路径
|
| 188 |
+
:param bit_n: 嵌入参数的后nbit
|
| 189 |
+
:param extract_malware: 提取出来的恶意软件路径
|
| 190 |
+
:param malware_len: 需要嵌入的恶意软件的长度,单位为bit
|
| 191 |
+
:return:
|
| 192 |
+
"""
|
| 193 |
+
paras = torch.load(inject_path, map_location="cpu"); bits, idx = BitArray(), 0;
|
| 194 |
+
_, size_list = self.get_layers_low_n_bit_size(self.get_pth_keys_float32(), bit_n)
|
| 195 |
+
for layer, _ in zip(self.get_pth_keys_float32(), size_list):
|
| 196 |
+
p = paras[layer].data
|
| 197 |
+
if p.dtype != torch.float32: continue
|
| 198 |
+
for x in p.flatten()[:min(len(p.flatten()), (malware_len - idx + bit_n - 1) // bit_n)]:
|
| 199 |
+
bits.append(f'0b{BitArray(int=int(x.view(torch.int32)), length=32).bin[-bit_n:]}');
|
| 200 |
+
idx += bit_n
|
| 201 |
+
if idx >= malware_len: break
|
| 202 |
+
if idx >= malware_len: break
|
| 203 |
+
with open(extract_malware, 'wb') as f:
|
| 204 |
+
bits_clip = bits[:(malware_len-(malware_len%bit_n))] + bits[-(malware_len%bit_n):]
|
| 205 |
+
bits_clip[:malware_len].tofile(f)
|
| 206 |
+
return
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
# def all_layers_low_n_bit_extract(self, inject_path, bit_n, extract_malware, malware_len):
|
| 210 |
+
# paras = torch.load(inject_path, map_location="cpu");
|
| 211 |
+
# pl = torch.load(self.path, map_location="cpu");
|
| 212 |
+
# layers = [k for k, v in pl.items() if v.dtype == torch.float32];
|
| 213 |
+
# bits, idx = BitArray(), 0
|
| 214 |
+
# for l in layers:
|
| 215 |
+
# f = paras[l].data.flatten();
|
| 216 |
+
# r = min(len(f), (malware_len - idx + bit_n - 1) // bit_n)
|
| 217 |
+
# for x in f[:r]:
|
| 218 |
+
# bits.append(f'0b{BitArray(int=int(x.view(torch.int32)), length=32).bin[-bit_n:]}');
|
| 219 |
+
# idx += bit_n
|
| 220 |
+
# if idx >= malware_len: break
|
| 221 |
+
# if idx >= malware_len: break
|
| 222 |
+
# with open(extract_malware, 'wb') as f:
|
| 223 |
+
# bits[:malware_len].tofile(f); return
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
if __name__ == "__main__":
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
path = "../parameters/classification/swin_face/swin_face.pth"
|
| 231 |
+
# flip_path = "../parametersProcess/swin/swin_flip_16.pth"
|
| 232 |
+
inject_path = "../parametersProcess/swin_face/swin_evilfiles_16.pth"
|
| 233 |
+
malware = "../malwares/generated_malware"
|
| 234 |
+
extract_malware = "../malwares/generated_malware_extracted"
|
| 235 |
+
agent = swin(path)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
# print("layers name: ", agent.get_pth_keys_float32())
|
| 239 |
+
# print("type: ", type(agent.get_pth_keys_float32()))
|
| 240 |
+
# print("layers num: ", len(agent.get_pth_keys_float32()))
|
| 241 |
+
|
| 242 |
+
size, size_list = agent.get_layers_low_n_bit_size(agent.get_pth_keys_float32(), 16)
|
| 243 |
+
# print("all layers injection size with low-16 bits: ", size / 8000000, " MB")
|
| 244 |
+
# print(size_list)
|
| 245 |
+
# print(len(size_list))
|
| 246 |
+
'''随机生成一个恶意软件,全部嵌入模型的层(简化流程)'''
|
| 247 |
+
generate_file_with_bits(malware, size)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
print("malware bit size: ",os.path.getsize(malware) * 8)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
'''嵌入'''
|
| 254 |
+
agent.all_layers_low_n_bit_inject(inject_path, 20, malware, os.path.getsize(malware) * 8)
|
| 255 |
+
|
| 256 |
+
'''提取'''
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
# def all_layers_low_n_bit_extract(ip, bn, em, ml):
|
| 260 |
+
# p = torch.load(ip, map_location="cpu");
|
| 261 |
+
# b, i = BitArray(), 0;
|
| 262 |
+
# lrs = [k for k, v in p.items() if v.dtype == torch.float32]
|
| 263 |
+
# for l in lrs:
|
| 264 |
+
# for x in p[l].data.flatten()[:min(len(p[l].data.flatten()), (ml - i + bn - 1) // bn)]:
|
| 265 |
+
# b.append(f'0b{BitArray(int=int(x.view(torch.int32)), length=32).bin[-bn:]}');
|
| 266 |
+
# i += bn
|
| 267 |
+
# if i >= ml: break
|
| 268 |
+
# if i >= ml: break
|
| 269 |
+
# with open(em, 'wb') as f:
|
| 270 |
+
# b[:ml].tofile(f);return
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
agent.all_layers_low_n_bit_extract(inject_path, 20, extract_malware, os.path.getsize(malware) * 8)
|
| 274 |
+
# agent.all_layers_low_n_bit_extract(inject_path, 16, extract_malware, 36272)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
# def all_layers_low_n_bit_extract(ip, bn, em, ml):
|
| 278 |
+
# p = torch.load(ip, map_location="cpu");
|
| 279 |
+
# b, i = BitArray(), 0;
|
| 280 |
+
# lrs = [k for k, v in p.items() if v.dtype == torch.float32]
|
| 281 |
+
# for l in lrs:
|
| 282 |
+
# for x in p[l].data.flatten()[:min(len(p[l].data.flatten()), (ml - i + bn - 1) // bn)]:
|
| 283 |
+
# b.append(f'0b{BitArray(int=int(x.view(torch.int32)), length=32).bin[-bn:]}');
|
| 284 |
+
# i += bn
|
| 285 |
+
# if i >= ml: break
|
| 286 |
+
# if i >= ml: break
|
| 287 |
+
# with open(em, 'wb') as f:
|
| 288 |
+
# b[:ml].tofile(f);return
|
| 289 |
+
# all_layers_low_n_bit_extract("~/data/ATATK/parametersProcess/swin/swin_inject_16.pth", 16, "~/data/ATATK/malwares/Zherkov_extract.EXE", 36272)
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
# agent.all_layers_low_n_bit_fLip(flip_path, 20)
|