File size: 1,462 Bytes
14733c0 e67193a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: apache-2.0
---
# TabM Model Instructions
## Model Overview
### 1.1 Method Description
This implementation utilizes the approach from the research paper:
**"TabM: Advancing Tabular Deep Learning With Parameter-Efficient Ensembling" (ICLR 2025)**
- **Paper Link**: https://arxiv.org/abs/2410.24210
- **Original Repository**: https://github.com/yandex-research/tabm
### 1.2 Motivation
Compared to traditional machine learning methods used in NeoRanking, we aim to explore the performance of Tabular Deep Learning approaches on this type of data for classification tasks.
## Training Details
### 2.1 Training Data
The detailed training dataset is located at: `data/tabm_train.tsv`
### 2.2 Training Parameters
- Model parameters were optimized using the `hyper` framework for parameter tuning
- Training script: `src/tabm_train.py`
- Testing script: `src/tabm_test.py`
### 2.3 Testing Data
- Test dataset: `data/tabm_test.tsv`
- Evaluation metrics have been updated in `spaces/leaderboard`
## Model Usage
### 3.1 Installation
```bash
pip3 install tabm
```
### 3.2 Training
```bash
bash scripts/tabm_train.sh
```
### 3.3 Testing
```bash
bash scripts/tabm_test.sh
```
## Special Notes
Our use of TabM fully complies with the **Apache-2.0 license**. If you need to reference or reuse this model, please adhere to the original author's citation requirements and properly attribute the source. |