File size: 1,462 Bytes
14733c0
 
 
e67193a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---

license: apache-2.0
---

# TabM Model Instructions

## Model Overview

### 1.1 Method Description
This implementation utilizes the approach from the research paper:  
**"TabM: Advancing Tabular Deep Learning With Parameter-Efficient Ensembling" (ICLR 2025)**

- **Paper Link**: https://arxiv.org/abs/2410.24210
- **Original Repository**: https://github.com/yandex-research/tabm

### 1.2 Motivation
Compared to traditional machine learning methods used in NeoRanking, we aim to explore the performance of Tabular Deep Learning approaches on this type of data for classification tasks.

## Training Details

### 2.1 Training Data
The detailed training dataset is located at: `data/tabm_train.tsv`

### 2.2 Training Parameters
- Model parameters were optimized using the `hyper` framework for parameter tuning
- Training script: `src/tabm_train.py`
- Testing script: `src/tabm_test.py`

### 2.3 Testing Data
- Test dataset: `data/tabm_test.tsv`
- Evaluation metrics have been updated in `spaces/leaderboard`

## Model Usage

### 3.1 Installation
```bash

pip3 install tabm

```

### 3.2 Training
```bash

bash scripts/tabm_train.sh

```

### 3.3 Testing
```bash

bash scripts/tabm_test.sh

```

## Special Notes

Our use of TabM fully complies with the **Apache-2.0 license**. If you need to reference or reuse this model, please adhere to the original author's citation requirements and properly attribute the source.