Upload 2 files
Browse files- VESBD-ODE/checkpoint.ckpt +3 -0
- VESBD-ODE/train.yaml +154 -0
VESBD-ODE/checkpoint.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f16700a860c1e88d117a64c1a41396027927a7f45185fbb5eaf2d4ce43317b8e
|
| 3 |
+
size 148095124
|
VESBD-ODE/train.yaml
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
si:
|
| 3 |
+
class_path: omg.si.stochastic_interpolants.StochasticInterpolants
|
| 4 |
+
init_args:
|
| 5 |
+
stochastic_interpolants:
|
| 6 |
+
# chemical species
|
| 7 |
+
- class_path: omg.si.single_stochastic_interpolant_identity.SingleStochasticInterpolantIdentity
|
| 8 |
+
# fractional coordinates
|
| 9 |
+
- class_path: omg.si.single_stochastic_interpolant_os.SingleStochasticInterpolantOS
|
| 10 |
+
init_args:
|
| 11 |
+
interpolant:
|
| 12 |
+
class_path: omg.si.interpolants.PeriodicScoreBasedDiffusionModelInterpolantVE
|
| 13 |
+
init_args:
|
| 14 |
+
sigma:
|
| 15 |
+
class_path: omg.si.sigma.GeometricSigma
|
| 16 |
+
init_args:
|
| 17 |
+
sigma_min: 0.007753186833706728
|
| 18 |
+
sigma_max: 0.5165059747015202
|
| 19 |
+
epsilon: null
|
| 20 |
+
differential_equation_type: "ODE"
|
| 21 |
+
integrator_kwargs:
|
| 22 |
+
method: "euler"
|
| 23 |
+
velocity_annealing_factor: 0.0030999124784898413
|
| 24 |
+
correct_center_of_mass_motion: true
|
| 25 |
+
predict_velocity: true
|
| 26 |
+
# lattice vectors
|
| 27 |
+
- class_path: omg.si.single_stochastic_interpolant.SingleStochasticInterpolant
|
| 28 |
+
init_args:
|
| 29 |
+
interpolant: omg.si.interpolants.TrigonometricInterpolant
|
| 30 |
+
gamma:
|
| 31 |
+
class_path: omg.si.gamma.LatentGammaSqrt
|
| 32 |
+
init_args:
|
| 33 |
+
a: 0.024482789522429726
|
| 34 |
+
epsilon:
|
| 35 |
+
class_path: omg.si.epsilon.VanishingEpsilon
|
| 36 |
+
init_args:
|
| 37 |
+
c: 9.940425570212101
|
| 38 |
+
mu: 0.24041599621265147
|
| 39 |
+
sigma: 0.021132860336543085
|
| 40 |
+
differential_equation_type: "SDE"
|
| 41 |
+
integrator_kwargs:
|
| 42 |
+
method: "euler"
|
| 43 |
+
dt: 0.0026332451961934566
|
| 44 |
+
velocity_annealing_factor: 14.933642154361792
|
| 45 |
+
correct_center_of_mass_motion: false
|
| 46 |
+
data_fields:
|
| 47 |
+
# if the order of the data_fields changes,
|
| 48 |
+
# the order of the above StochasticInterpolant inputs must also change
|
| 49 |
+
- "species"
|
| 50 |
+
- "pos"
|
| 51 |
+
- "cell"
|
| 52 |
+
integration_time_steps: 380
|
| 53 |
+
relative_si_costs:
|
| 54 |
+
species_loss: 0.0
|
| 55 |
+
pos_loss_b: 0.979954187812053
|
| 56 |
+
cell_loss_b: 0.01866918394074503
|
| 57 |
+
cell_loss_z: 0.0013766282472020075
|
| 58 |
+
sampler:
|
| 59 |
+
class_path: omg.sampler.sample_from_rng.SampleFromRNG
|
| 60 |
+
init_args:
|
| 61 |
+
pos_distribution:
|
| 62 |
+
class_path: omg.sampler.distributions.NormalDistribution
|
| 63 |
+
init_args:
|
| 64 |
+
scale: 8.955438982782663
|
| 65 |
+
cell_distribution:
|
| 66 |
+
class_path: omg.sampler.distributions.InformedLatticeDistribution
|
| 67 |
+
init_args:
|
| 68 |
+
dataset_name: perov_5
|
| 69 |
+
species_distribution:
|
| 70 |
+
class_path: omg.sampler.distributions.MirrorData
|
| 71 |
+
model:
|
| 72 |
+
class_path: omg.model.model.Model
|
| 73 |
+
init_args:
|
| 74 |
+
encoder:
|
| 75 |
+
class_path: omg.model.encoders.cspnet_full.CSPNetFull
|
| 76 |
+
head:
|
| 77 |
+
class_path: omg.model.heads.pass_through.PassThrough
|
| 78 |
+
time_embedder:
|
| 79 |
+
class_path: omg.model.model_utils.SinusoidalTimeEmbeddings
|
| 80 |
+
init_args:
|
| 81 |
+
dim: 256
|
| 82 |
+
use_min_perm_dist: False
|
| 83 |
+
float_32_matmul_precision: "high"
|
| 84 |
+
validation_mode: "match_rate"
|
| 85 |
+
dataset_name: "perov_5"
|
| 86 |
+
data:
|
| 87 |
+
train_dataset:
|
| 88 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 89 |
+
init_args:
|
| 90 |
+
dataset:
|
| 91 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 92 |
+
init_args:
|
| 93 |
+
lmdb_paths:
|
| 94 |
+
- "data/perov_5/train.lmdb"
|
| 95 |
+
niggli: False
|
| 96 |
+
val_dataset:
|
| 97 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 98 |
+
init_args:
|
| 99 |
+
dataset:
|
| 100 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 101 |
+
init_args:
|
| 102 |
+
lmdb_paths:
|
| 103 |
+
- "data/perov_5/val.lmdb"
|
| 104 |
+
niggli: False
|
| 105 |
+
predict_dataset:
|
| 106 |
+
class_path: omg.datamodule.dataloader.OMGTorchDataset
|
| 107 |
+
init_args:
|
| 108 |
+
dataset:
|
| 109 |
+
class_path: omg.datamodule.datamodule.DataModule
|
| 110 |
+
init_args:
|
| 111 |
+
lmdb_paths:
|
| 112 |
+
- "data/perov_5/test.lmdb"
|
| 113 |
+
niggli: False
|
| 114 |
+
batch_size: 256
|
| 115 |
+
num_workers: 4
|
| 116 |
+
pin_memory: True
|
| 117 |
+
persistent_workers: True
|
| 118 |
+
trainer:
|
| 119 |
+
callbacks:
|
| 120 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 121 |
+
init_args:
|
| 122 |
+
filename: "best_val_loss_total"
|
| 123 |
+
save_top_k: 1
|
| 124 |
+
monitor: "val_loss_total"
|
| 125 |
+
save_weights_only: true
|
| 126 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 127 |
+
init_args:
|
| 128 |
+
filename: "best_val_match_rate"
|
| 129 |
+
save_top_k: 1
|
| 130 |
+
monitor: "match_rate"
|
| 131 |
+
save_weights_only: true
|
| 132 |
+
mode: 'max'
|
| 133 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 134 |
+
init_args:
|
| 135 |
+
filename: "best_val_rmsd"
|
| 136 |
+
save_top_k: 1
|
| 137 |
+
monitor: "mean_rmsd"
|
| 138 |
+
save_weights_only: true
|
| 139 |
+
- class_path: lightning.pytorch.callbacks.ModelCheckpoint
|
| 140 |
+
init_args:
|
| 141 |
+
save_top_k: -1 # Store every checkpoint after 100 epochs.
|
| 142 |
+
monitor: "val_loss_total"
|
| 143 |
+
every_n_epochs: 100
|
| 144 |
+
save_weights_only: false
|
| 145 |
+
gradient_clip_val: 0.5
|
| 146 |
+
num_sanity_val_steps: 0
|
| 147 |
+
precision: "32-true"
|
| 148 |
+
max_epochs: 6000
|
| 149 |
+
enable_progress_bar: false
|
| 150 |
+
check_val_every_n_epoch: 100
|
| 151 |
+
optimizer:
|
| 152 |
+
class_path: torch.optim.Adam
|
| 153 |
+
init_args:
|
| 154 |
+
lr: 0.0077762908469486665
|