Delete awq_marlin.py
Browse files- awq_marlin.py +0 -526
awq_marlin.py
DELETED
|
@@ -1,526 +0,0 @@
|
|
| 1 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
-
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
| 3 |
-
|
| 4 |
-
from typing import Any, Callable, Optional
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
from torch.nn import Parameter
|
| 8 |
-
|
| 9 |
-
import vllm.model_executor.layers.fused_moe # noqa
|
| 10 |
-
from vllm import _custom_ops as ops
|
| 11 |
-
from vllm.logger import init_logger
|
| 12 |
-
from vllm.model_executor.layers.fused_moe.layer import (
|
| 13 |
-
FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported,
|
| 14 |
-
UnquantizedFusedMoEMethod)
|
| 15 |
-
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
| 16 |
-
UnquantizedLinearMethod,
|
| 17 |
-
set_weight_attrs)
|
| 18 |
-
from vllm.model_executor.layers.quantization import QuantizationMethods
|
| 19 |
-
from vllm.model_executor.layers.quantization.awq import (AWQConfig,
|
| 20 |
-
is_layer_skipped_awq)
|
| 21 |
-
from vllm.model_executor.layers.quantization.base_config import (
|
| 22 |
-
QuantizationConfig, QuantizeMethodBase)
|
| 23 |
-
from vllm.model_executor.layers.quantization.utils import replace_parameter
|
| 24 |
-
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
|
| 25 |
-
apply_awq_marlin_linear, awq_to_marlin_zero_points, check_marlin_supported,
|
| 26 |
-
check_marlin_supports_layer, check_moe_marlin_supports_layer,
|
| 27 |
-
marlin_make_empty_g_idx, marlin_make_workspace_new,
|
| 28 |
-
marlin_moe_permute_scales, marlin_permute_scales,
|
| 29 |
-
moe_awq_to_marlin_zero_points, verify_marlin_supported,
|
| 30 |
-
verify_marlin_supports_shape)
|
| 31 |
-
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
| 32 |
-
from vllm.model_executor.parameter import (GroupQuantScaleParameter,
|
| 33 |
-
PackedvLLMParameter)
|
| 34 |
-
from vllm.platforms import current_platform
|
| 35 |
-
from vllm.scalar_type import scalar_types
|
| 36 |
-
|
| 37 |
-
logger = init_logger(__name__)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
class AWQMarlinConfig(QuantizationConfig):
|
| 41 |
-
"""Config class for AWQ Marlin"""
|
| 42 |
-
|
| 43 |
-
# num_bits -> type
|
| 44 |
-
TYPE_MAP = {
|
| 45 |
-
4: scalar_types.uint4,
|
| 46 |
-
8: scalar_types.uint8,
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
def __init__(self, weight_bits: int, group_size: int, zero_point: bool,
|
| 50 |
-
lm_head_quantized: bool,
|
| 51 |
-
modules_to_not_convert: Optional[list[str]],
|
| 52 |
-
full_config: dict[str, Any]) -> None:
|
| 53 |
-
super().__init__()
|
| 54 |
-
self.pack_factor = 32 // weight_bits # packed into int32
|
| 55 |
-
self.group_size = group_size
|
| 56 |
-
self.zero_point = zero_point
|
| 57 |
-
self.lm_head_quantized = lm_head_quantized
|
| 58 |
-
self.weight_bits = weight_bits
|
| 59 |
-
self.modules_to_not_convert = modules_to_not_convert or []
|
| 60 |
-
self.full_config = full_config
|
| 61 |
-
|
| 62 |
-
if self.weight_bits not in self.TYPE_MAP:
|
| 63 |
-
raise ValueError(f"Unsupported num_bits = {self.weight_bits}. "
|
| 64 |
-
f"Supported num_bits = {self.TYPE_MAP.keys()}")
|
| 65 |
-
|
| 66 |
-
self.quant_type = self.TYPE_MAP[self.weight_bits]
|
| 67 |
-
|
| 68 |
-
verify_marlin_supported(self.quant_type,
|
| 69 |
-
group_size=self.group_size,
|
| 70 |
-
has_zp=self.zero_point)
|
| 71 |
-
|
| 72 |
-
def __repr__(self) -> str:
|
| 73 |
-
return (f"AWQMarlinConfig(quant_type={self.quant_type}, "
|
| 74 |
-
f"group_size={self.group_size}, "
|
| 75 |
-
f"zero_point={self.zero_point}, "
|
| 76 |
-
f"lm_head_quantized={self.lm_head_quantized}, "
|
| 77 |
-
f"modules_to_not_convert={self.modules_to_not_convert})")
|
| 78 |
-
|
| 79 |
-
@classmethod
|
| 80 |
-
def get_name(cls) -> QuantizationMethods:
|
| 81 |
-
return "awq_marlin"
|
| 82 |
-
|
| 83 |
-
@classmethod
|
| 84 |
-
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
|
| 85 |
-
return [torch.half, torch.bfloat16]
|
| 86 |
-
|
| 87 |
-
@classmethod
|
| 88 |
-
def get_min_capability(cls) -> int:
|
| 89 |
-
return 80
|
| 90 |
-
|
| 91 |
-
@classmethod
|
| 92 |
-
def get_config_filenames(cls) -> list[str]:
|
| 93 |
-
return ["quantize_config.json"]
|
| 94 |
-
|
| 95 |
-
@classmethod
|
| 96 |
-
def from_config(cls, config: dict[str, Any]) -> "AWQMarlinConfig":
|
| 97 |
-
weight_bits = cls.get_from_keys(config, ["bits"])
|
| 98 |
-
group_size = cls.get_from_keys(config, ["group_size"])
|
| 99 |
-
zero_point = cls.get_from_keys(config, ["zero_point"])
|
| 100 |
-
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
|
| 101 |
-
default=False)
|
| 102 |
-
modules_to_not_convert = cls.get_from_keys_or(
|
| 103 |
-
config, ["modules_to_not_convert"], None)
|
| 104 |
-
return cls(weight_bits, group_size, zero_point, lm_head_quantized,
|
| 105 |
-
modules_to_not_convert, config)
|
| 106 |
-
|
| 107 |
-
@classmethod
|
| 108 |
-
def override_quantization_method(
|
| 109 |
-
cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
|
| 110 |
-
can_convert = cls.is_awq_marlin_compatible(hf_quant_cfg)
|
| 111 |
-
is_valid_user_quant = (user_quant is None or user_quant == "marlin"
|
| 112 |
-
or user_quant == "awq_marlin")
|
| 113 |
-
|
| 114 |
-
if can_convert and is_valid_user_quant:
|
| 115 |
-
msg = ("The model is convertible to {} during runtime."
|
| 116 |
-
" Using {} kernel.".format(cls.get_name(), cls.get_name()))
|
| 117 |
-
logger.info(msg)
|
| 118 |
-
return cls.get_name()
|
| 119 |
-
|
| 120 |
-
if can_convert and user_quant == "awq":
|
| 121 |
-
logger.info("Detected that the model can run with awq_marlin"
|
| 122 |
-
", however you specified quantization=awq explicitly,"
|
| 123 |
-
" so forcing awq. Use quantization=awq_marlin for"
|
| 124 |
-
" faster inference")
|
| 125 |
-
return None
|
| 126 |
-
|
| 127 |
-
def get_quant_method(self, layer: torch.nn.Module,
|
| 128 |
-
prefix: str) -> Optional["QuantizeMethodBase"]:
|
| 129 |
-
if (isinstance(layer, LinearBase) or
|
| 130 |
-
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
|
| 131 |
-
if is_layer_skipped_awq(prefix, self.modules_to_not_convert):
|
| 132 |
-
return UnquantizedLinearMethod()
|
| 133 |
-
# Check if the layer is supported by AWQMarlin.
|
| 134 |
-
if not check_marlin_supports_layer(layer, self.group_size):
|
| 135 |
-
logger.warning_once(
|
| 136 |
-
"Layer '%s' is not supported by AWQMarlin. Falling back to unoptimized AWQ kernels.", # noqa: E501
|
| 137 |
-
prefix,
|
| 138 |
-
)
|
| 139 |
-
return AWQConfig.from_config(
|
| 140 |
-
self.full_config).get_quant_method(layer, prefix)
|
| 141 |
-
return AWQMarlinLinearMethod(self)
|
| 142 |
-
elif isinstance(layer, FusedMoE):
|
| 143 |
-
if is_layer_skipped_awq(prefix, getattr(self, "modules_to_not_convert", [])):
|
| 144 |
-
return UnquantizedFusedMoEMethod(layer.moe_config)
|
| 145 |
-
from vllm.model_executor.layers.quantization.moe_wna16 import (
|
| 146 |
-
MoeWNA16Config)
|
| 147 |
-
if not check_moe_marlin_supports_layer(layer, self.group_size):
|
| 148 |
-
logger.warning_once(
|
| 149 |
-
f"Layer '{prefix}' is not supported by AWQMoeMarlin. "
|
| 150 |
-
"Falling back to Moe WNA16 kernels.")
|
| 151 |
-
return MoeWNA16Config.from_config(
|
| 152 |
-
self.full_config).get_quant_method(layer, prefix)
|
| 153 |
-
return AWQMoEMethod(self)
|
| 154 |
-
return None
|
| 155 |
-
|
| 156 |
-
@classmethod
|
| 157 |
-
def is_awq_marlin_compatible(cls, quant_config: dict[str, Any]):
|
| 158 |
-
# Extract data from quant config.
|
| 159 |
-
quant_method = quant_config.get("quant_method", "").lower()
|
| 160 |
-
num_bits = quant_config.get("bits")
|
| 161 |
-
group_size = quant_config.get("group_size")
|
| 162 |
-
zero_point = quant_config.get("zero_point")
|
| 163 |
-
|
| 164 |
-
if not current_platform.is_cuda():
|
| 165 |
-
return False
|
| 166 |
-
|
| 167 |
-
if quant_method != "awq":
|
| 168 |
-
return False
|
| 169 |
-
|
| 170 |
-
# If we cannot find the info needed in the config, cannot convert.
|
| 171 |
-
if (num_bits is None or group_size is None or zero_point is None):
|
| 172 |
-
return False
|
| 173 |
-
|
| 174 |
-
if num_bits not in cls.TYPE_MAP:
|
| 175 |
-
return False
|
| 176 |
-
|
| 177 |
-
return check_marlin_supported(quant_type=cls.TYPE_MAP[num_bits],
|
| 178 |
-
group_size=group_size,
|
| 179 |
-
has_zp=zero_point)
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
class AWQMarlinLinearMethod(LinearMethodBase):
|
| 183 |
-
"""Linear method for AWQ Marlin.
|
| 184 |
-
|
| 185 |
-
Args:
|
| 186 |
-
quant_config: The AWQ Marlin quantization config.
|
| 187 |
-
"""
|
| 188 |
-
|
| 189 |
-
def __init__(self, quant_config: AWQMarlinConfig) -> None:
|
| 190 |
-
self.quant_config = quant_config
|
| 191 |
-
|
| 192 |
-
def create_weights(
|
| 193 |
-
self,
|
| 194 |
-
layer: torch.nn.Module,
|
| 195 |
-
input_size_per_partition: int,
|
| 196 |
-
output_partition_sizes: list[int],
|
| 197 |
-
input_size: int,
|
| 198 |
-
output_size: int,
|
| 199 |
-
params_dtype: torch.dtype,
|
| 200 |
-
**extra_weight_attrs,
|
| 201 |
-
) -> None:
|
| 202 |
-
del output_size
|
| 203 |
-
output_size_per_partition = sum(output_partition_sizes)
|
| 204 |
-
weight_loader = extra_weight_attrs.get("weight_loader")
|
| 205 |
-
|
| 206 |
-
# Normalize group_size
|
| 207 |
-
if self.quant_config.group_size != -1:
|
| 208 |
-
group_size = self.quant_config.group_size
|
| 209 |
-
else:
|
| 210 |
-
group_size = input_size
|
| 211 |
-
|
| 212 |
-
verify_marlin_supports_shape(
|
| 213 |
-
output_size_per_partition=output_size_per_partition,
|
| 214 |
-
input_size_per_partition=input_size_per_partition,
|
| 215 |
-
input_size=input_size,
|
| 216 |
-
group_size=group_size)
|
| 217 |
-
|
| 218 |
-
qweight = PackedvLLMParameter(
|
| 219 |
-
data=torch.empty(
|
| 220 |
-
input_size_per_partition,
|
| 221 |
-
output_size_per_partition // self.quant_config.pack_factor,
|
| 222 |
-
dtype=torch.int32,
|
| 223 |
-
),
|
| 224 |
-
input_dim=0,
|
| 225 |
-
output_dim=1,
|
| 226 |
-
packed_dim=1,
|
| 227 |
-
packed_factor=self.quant_config.pack_factor,
|
| 228 |
-
weight_loader=weight_loader)
|
| 229 |
-
|
| 230 |
-
num_groups = input_size_per_partition // group_size
|
| 231 |
-
|
| 232 |
-
qzeros = PackedvLLMParameter(
|
| 233 |
-
data=torch.empty(
|
| 234 |
-
num_groups,
|
| 235 |
-
output_size_per_partition // self.quant_config.pack_factor,
|
| 236 |
-
dtype=torch.int32,
|
| 237 |
-
),
|
| 238 |
-
input_dim=0,
|
| 239 |
-
output_dim=1,
|
| 240 |
-
packed_dim=1,
|
| 241 |
-
packed_factor=self.quant_config.pack_factor,
|
| 242 |
-
weight_loader=weight_loader)
|
| 243 |
-
|
| 244 |
-
scales = GroupQuantScaleParameter(data=torch.empty(
|
| 245 |
-
num_groups,
|
| 246 |
-
output_size_per_partition,
|
| 247 |
-
dtype=params_dtype,
|
| 248 |
-
),
|
| 249 |
-
input_dim=0,
|
| 250 |
-
output_dim=1,
|
| 251 |
-
weight_loader=weight_loader)
|
| 252 |
-
|
| 253 |
-
layer.register_parameter("qweight", qweight)
|
| 254 |
-
layer.register_parameter("qzeros", qzeros)
|
| 255 |
-
layer.register_parameter("scales", scales)
|
| 256 |
-
|
| 257 |
-
layer.input_size_per_partition = input_size_per_partition
|
| 258 |
-
layer.output_size_per_partition = output_size_per_partition
|
| 259 |
-
layer.num_groups = num_groups
|
| 260 |
-
|
| 261 |
-
# TODO: Update this docs
|
| 262 |
-
# Checkpoints are serialized in AutoAWQ format, which is different from the
|
| 263 |
-
# marlin format. This function is called after the weights are loaded.
|
| 264 |
-
# Here, we handle the repacking
|
| 265 |
-
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
| 266 |
-
device = layer.qweight.device
|
| 267 |
-
layer.qweight = torch.nn.Parameter(layer.qweight.data,
|
| 268 |
-
requires_grad=False)
|
| 269 |
-
layer.qzeros = torch.nn.Parameter(layer.qzeros.data,
|
| 270 |
-
requires_grad=False)
|
| 271 |
-
layer.scales = torch.nn.Parameter(layer.scales.data,
|
| 272 |
-
requires_grad=False)
|
| 273 |
-
|
| 274 |
-
# Allocate marlin workspace
|
| 275 |
-
layer.workspace = marlin_make_workspace_new(device)
|
| 276 |
-
|
| 277 |
-
# Repack weights from AWQ format to marlin format.
|
| 278 |
-
marlin_qweight = ops.awq_marlin_repack(
|
| 279 |
-
layer.qweight,
|
| 280 |
-
size_k=layer.input_size_per_partition,
|
| 281 |
-
size_n=layer.output_size_per_partition,
|
| 282 |
-
num_bits=self.quant_config.quant_type.size_bits)
|
| 283 |
-
replace_parameter(layer, "qweight", marlin_qweight)
|
| 284 |
-
|
| 285 |
-
# Permute scales from AWQ format to marlin format.
|
| 286 |
-
marlin_scales = marlin_permute_scales(
|
| 287 |
-
layer.scales,
|
| 288 |
-
size_k=layer.input_size_per_partition,
|
| 289 |
-
size_n=layer.output_size_per_partition,
|
| 290 |
-
group_size=self.quant_config.group_size)
|
| 291 |
-
replace_parameter(layer, "scales", marlin_scales)
|
| 292 |
-
|
| 293 |
-
# Permute zero-points from AWQ format to marlin format.
|
| 294 |
-
marlin_zp = awq_to_marlin_zero_points(
|
| 295 |
-
layer.qzeros,
|
| 296 |
-
size_k=layer.num_groups,
|
| 297 |
-
size_n=layer.output_size_per_partition,
|
| 298 |
-
num_bits=self.quant_config.quant_type.size_bits)
|
| 299 |
-
replace_parameter(layer, "qzeros", marlin_zp)
|
| 300 |
-
|
| 301 |
-
# Not-used
|
| 302 |
-
layer.g_idx = marlin_make_empty_g_idx(device)
|
| 303 |
-
layer.g_idx_sort_indices = marlin_make_empty_g_idx(device)
|
| 304 |
-
|
| 305 |
-
def apply(
|
| 306 |
-
self,
|
| 307 |
-
layer: torch.nn.Module,
|
| 308 |
-
x: torch.Tensor,
|
| 309 |
-
bias: Optional[torch.Tensor] = None,
|
| 310 |
-
) -> torch.Tensor:
|
| 311 |
-
return apply_awq_marlin_linear(
|
| 312 |
-
input=x,
|
| 313 |
-
weight=layer.qweight,
|
| 314 |
-
weight_scale=layer.scales,
|
| 315 |
-
weight_zp=layer.qzeros,
|
| 316 |
-
g_idx=layer.g_idx,
|
| 317 |
-
g_idx_sort_indices=layer.g_idx_sort_indices,
|
| 318 |
-
workspace=layer.workspace,
|
| 319 |
-
quant_type=self.quant_config.quant_type,
|
| 320 |
-
output_size_per_partition=layer.output_size_per_partition,
|
| 321 |
-
input_size_per_partition=layer.input_size_per_partition,
|
| 322 |
-
bias=bias)
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
class AWQMoEMethod(FusedMoEMethodBase):
|
| 326 |
-
|
| 327 |
-
def __init__(self, quant_config: AWQMarlinConfig):
|
| 328 |
-
self.quant_config = quant_config
|
| 329 |
-
if self.quant_config.weight_bits != 4:
|
| 330 |
-
raise ValueError("AWQMoEMethod only supports 4bit now.")
|
| 331 |
-
self.quant_type = scalar_types.uint4
|
| 332 |
-
|
| 333 |
-
def create_weights(self, layer: torch.nn.Module, num_experts: int,
|
| 334 |
-
hidden_size: int, intermediate_size_per_partition: int,
|
| 335 |
-
params_dtype: torch.dtype, **extra_weight_attrs):
|
| 336 |
-
extra_weight_attrs.update({
|
| 337 |
-
"is_transposed":
|
| 338 |
-
True,
|
| 339 |
-
"quant_method":
|
| 340 |
-
FusedMoeWeightScaleSupported.GROUP.value,
|
| 341 |
-
})
|
| 342 |
-
|
| 343 |
-
w13_qweight = Parameter(
|
| 344 |
-
torch.empty(num_experts,
|
| 345 |
-
hidden_size,
|
| 346 |
-
2 * intermediate_size_per_partition //
|
| 347 |
-
self.quant_config.pack_factor,
|
| 348 |
-
dtype=torch.int32),
|
| 349 |
-
requires_grad=False)
|
| 350 |
-
layer.register_parameter("w13_qweight", w13_qweight)
|
| 351 |
-
set_weight_attrs(w13_qweight, extra_weight_attrs)
|
| 352 |
-
|
| 353 |
-
w2_qweight = Parameter(torch.empty(num_experts,
|
| 354 |
-
intermediate_size_per_partition,
|
| 355 |
-
hidden_size //
|
| 356 |
-
self.quant_config.pack_factor,
|
| 357 |
-
dtype=torch.int32),
|
| 358 |
-
requires_grad=False)
|
| 359 |
-
layer.register_parameter("w2_qweight", w2_qweight)
|
| 360 |
-
set_weight_attrs(w2_qweight, extra_weight_attrs)
|
| 361 |
-
|
| 362 |
-
num_groups_w13 = hidden_size // self.quant_config.group_size
|
| 363 |
-
num_groups_w2 = (intermediate_size_per_partition //
|
| 364 |
-
self.quant_config.group_size)
|
| 365 |
-
|
| 366 |
-
# WEIGHT_SCALES
|
| 367 |
-
# Allocate 2 scales for w1 and w3 respectively.
|
| 368 |
-
w13_scales = Parameter(torch.empty(num_experts,
|
| 369 |
-
num_groups_w13,
|
| 370 |
-
intermediate_size_per_partition * 2,
|
| 371 |
-
dtype=params_dtype),
|
| 372 |
-
requires_grad=False)
|
| 373 |
-
layer.register_parameter("w13_scales", w13_scales)
|
| 374 |
-
set_weight_attrs(w13_scales, extra_weight_attrs)
|
| 375 |
-
|
| 376 |
-
w2_scales = Parameter(torch.empty(num_experts,
|
| 377 |
-
num_groups_w2,
|
| 378 |
-
hidden_size,
|
| 379 |
-
dtype=params_dtype),
|
| 380 |
-
requires_grad=False)
|
| 381 |
-
layer.register_parameter("w2_scales", w2_scales)
|
| 382 |
-
set_weight_attrs(w2_scales, extra_weight_attrs)
|
| 383 |
-
|
| 384 |
-
# WEIGHT_ZERO_POINT
|
| 385 |
-
# Allocate 2 zero points for w1 and w3 respectively.
|
| 386 |
-
w13_qzeros = Parameter(
|
| 387 |
-
torch.empty(num_experts,
|
| 388 |
-
num_groups_w13,
|
| 389 |
-
2 * intermediate_size_per_partition //
|
| 390 |
-
self.quant_config.pack_factor,
|
| 391 |
-
dtype=torch.int32),
|
| 392 |
-
requires_grad=False)
|
| 393 |
-
layer.register_parameter("w13_qzeros", w13_qzeros)
|
| 394 |
-
set_weight_attrs(w13_qzeros, extra_weight_attrs)
|
| 395 |
-
|
| 396 |
-
w2_qzeros = Parameter(torch.empty(num_experts,
|
| 397 |
-
num_groups_w2,
|
| 398 |
-
hidden_size //
|
| 399 |
-
self.quant_config.pack_factor,
|
| 400 |
-
dtype=torch.int32),
|
| 401 |
-
requires_grad=False)
|
| 402 |
-
layer.register_parameter("w2_qzeros", w2_qzeros)
|
| 403 |
-
set_weight_attrs(w2_qzeros, extra_weight_attrs)
|
| 404 |
-
|
| 405 |
-
device = layer.w13_qweight.device
|
| 406 |
-
layer.workspace = marlin_make_workspace_new(device, 4)
|
| 407 |
-
|
| 408 |
-
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
| 409 |
-
num_experts = layer.w13_qweight.shape[0]
|
| 410 |
-
device = layer.w13_qweight.device
|
| 411 |
-
|
| 412 |
-
layer.w13_g_idx_sort_indices = torch.nn.Parameter(
|
| 413 |
-
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
|
| 414 |
-
requires_grad=False,
|
| 415 |
-
)
|
| 416 |
-
layer.w2_g_idx_sort_indices = torch.nn.Parameter(
|
| 417 |
-
torch.empty((num_experts, 0), dtype=torch.int32, device=device),
|
| 418 |
-
requires_grad=False,
|
| 419 |
-
)
|
| 420 |
-
|
| 421 |
-
marlin_w13_qweight = ops.awq_marlin_moe_repack(
|
| 422 |
-
layer.w13_qweight,
|
| 423 |
-
layer.w13_g_idx_sort_indices,
|
| 424 |
-
size_k=layer.w13_qweight.shape[1],
|
| 425 |
-
size_n=layer.w13_qweight.shape[2] * self.quant_config.pack_factor,
|
| 426 |
-
num_bits=self.quant_config.weight_bits,
|
| 427 |
-
)
|
| 428 |
-
replace_parameter(layer, "w13_qweight", marlin_w13_qweight)
|
| 429 |
-
|
| 430 |
-
marlin_w2_qweight = ops.awq_marlin_moe_repack(
|
| 431 |
-
layer.w2_qweight,
|
| 432 |
-
layer.w2_g_idx_sort_indices,
|
| 433 |
-
size_k=layer.w2_qweight.shape[1],
|
| 434 |
-
size_n=layer.w2_qweight.shape[2] * self.quant_config.pack_factor,
|
| 435 |
-
num_bits=self.quant_config.weight_bits,
|
| 436 |
-
)
|
| 437 |
-
replace_parameter(layer, "w2_qweight", marlin_w2_qweight)
|
| 438 |
-
|
| 439 |
-
# Why does this take the intermediate size for size_k?
|
| 440 |
-
marlin_w13_scales = marlin_moe_permute_scales(
|
| 441 |
-
s=layer.w13_scales,
|
| 442 |
-
size_k=layer.intermediate_size_per_partition,
|
| 443 |
-
size_n=layer.w13_scales.shape[2],
|
| 444 |
-
group_size=self.quant_config.group_size,
|
| 445 |
-
)
|
| 446 |
-
|
| 447 |
-
replace_parameter(layer, "w13_scales", marlin_w13_scales)
|
| 448 |
-
|
| 449 |
-
marlin_w2_scales = marlin_moe_permute_scales(
|
| 450 |
-
s=layer.w2_scales,
|
| 451 |
-
size_k=layer.intermediate_size_per_partition,
|
| 452 |
-
size_n=layer.w2_scales.shape[2],
|
| 453 |
-
group_size=self.quant_config.group_size,
|
| 454 |
-
)
|
| 455 |
-
replace_parameter(layer, "w2_scales", marlin_w2_scales)
|
| 456 |
-
|
| 457 |
-
marlin_w13_zp = moe_awq_to_marlin_zero_points(
|
| 458 |
-
layer.w13_qzeros,
|
| 459 |
-
size_k=layer.w13_qzeros.shape[1],
|
| 460 |
-
size_n=layer.w13_qzeros.shape[2] * self.quant_config.pack_factor,
|
| 461 |
-
num_bits=self.quant_config.weight_bits)
|
| 462 |
-
replace_parameter(layer, "w13_qzeros", marlin_w13_zp)
|
| 463 |
-
|
| 464 |
-
marlin_w2_zp = moe_awq_to_marlin_zero_points(
|
| 465 |
-
layer.w2_qzeros,
|
| 466 |
-
size_k=layer.w2_qzeros.shape[1],
|
| 467 |
-
size_n=layer.w2_qzeros.shape[2] * self.quant_config.pack_factor,
|
| 468 |
-
num_bits=self.quant_config.weight_bits)
|
| 469 |
-
replace_parameter(layer, "w2_qzeros", marlin_w2_zp)
|
| 470 |
-
|
| 471 |
-
def apply(
|
| 472 |
-
self,
|
| 473 |
-
layer: torch.nn.Module,
|
| 474 |
-
x: torch.Tensor,
|
| 475 |
-
router_logits: torch.Tensor,
|
| 476 |
-
top_k: int,
|
| 477 |
-
renormalize: bool,
|
| 478 |
-
use_grouped_topk: bool = False,
|
| 479 |
-
topk_group: Optional[int] = None,
|
| 480 |
-
num_expert_group: Optional[int] = None,
|
| 481 |
-
global_num_experts: int = -1,
|
| 482 |
-
expert_map: Optional[torch.Tensor] = None,
|
| 483 |
-
custom_routing_function: Optional[Callable] = None,
|
| 484 |
-
scoring_func: str = "softmax",
|
| 485 |
-
e_score_correction_bias: Optional[torch.Tensor] = None,
|
| 486 |
-
apply_router_weight_on_input: bool = False,
|
| 487 |
-
activation: str = "silu",
|
| 488 |
-
enable_eplb: bool = False,
|
| 489 |
-
expert_load_view: Optional[torch.Tensor] = None,
|
| 490 |
-
logical_to_physical_map: Optional[torch.Tensor] = None,
|
| 491 |
-
logical_replica_count: Optional[torch.Tensor] = None,
|
| 492 |
-
) -> torch.Tensor:
|
| 493 |
-
if enable_eplb:
|
| 494 |
-
raise NotImplementedError(
|
| 495 |
-
"EPLB not supported for `AWQMoEMethod` yet.")
|
| 496 |
-
|
| 497 |
-
assert activation == "silu", "Only SiLU activation is supported."
|
| 498 |
-
|
| 499 |
-
topk_weights, topk_ids = FusedMoE.select_experts(
|
| 500 |
-
hidden_states=x,
|
| 501 |
-
router_logits=router_logits,
|
| 502 |
-
use_grouped_topk=use_grouped_topk,
|
| 503 |
-
top_k=top_k,
|
| 504 |
-
renormalize=renormalize,
|
| 505 |
-
topk_group=topk_group,
|
| 506 |
-
num_expert_group=num_expert_group,
|
| 507 |
-
custom_routing_function=custom_routing_function,
|
| 508 |
-
scoring_func=scoring_func,
|
| 509 |
-
e_score_correction_bias=e_score_correction_bias)
|
| 510 |
-
|
| 511 |
-
return torch.ops.vllm.fused_marlin_moe(
|
| 512 |
-
x,
|
| 513 |
-
layer.w13_qweight,
|
| 514 |
-
layer.w2_qweight,
|
| 515 |
-
layer.w13_scales,
|
| 516 |
-
layer.w2_scales,
|
| 517 |
-
router_logits,
|
| 518 |
-
topk_weights,
|
| 519 |
-
topk_ids,
|
| 520 |
-
quant_type_id=self.quant_type.id,
|
| 521 |
-
apply_router_weight_on_input=apply_router_weight_on_input,
|
| 522 |
-
global_num_experts=global_num_experts,
|
| 523 |
-
expert_map=expert_map,
|
| 524 |
-
w1_zeros=layer.w13_qzeros,
|
| 525 |
-
w2_zeros=layer.w2_qzeros,
|
| 526 |
-
workspace=layer.workspace)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|