--- license: mit --- # AUV > Teaching **A**udio **U**niversal **V**ector Quantization with Single Nested Codebook [![python](https://img.shields.io/badge/Python-3.8-brightgreen?logo=Python&style=for-the-badge)](https://www.python.org/) [![arXiv](https://img.shields.io/badge/Paper-2509.21968-b31b1b.svg?logo=arXiv&style=for-the-badge)](https://arxiv.org/abs/2509.21968) [![demo](https://img.shields.io/badge/Demo-Samples-orange.svg?logo=Github&style=for-the-badge)](https://swivid.github.io/AUV/) ## Setup ```bash pip install auv wget https://huggingface.co/SWivid/AUV/resolve/main/auv.pt ``` ## Inference Command line usage, reconstruct all `.wav` files under the `input-dir` and write to the `output-dir`: ```bash auv-infer --input-dir INPUT_WAV_DIR --output-dir OUTPUT_WAV_DIR --ckpt CKPT_PATH # if torch.bfloat16 inference: --bf16 # if need to assign gpu: --device cuda:0 ``` Python script usage see [`src/auv/infer.py`](https://github.com/SWivid/AUV/blob/main/src/auv/infer.py).