File size: 1,196 Bytes
636cd2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# cyber-threat-detector-v1
## Overview
This model is specialized in detecting malicious intent within command-line strings and network log entries. It helps security analysts flag potentially harmful activity in real-time.
## Model Architecture
- **Base Model:** RoBERTa-base
- **Fine-tuning:** Trained on custom cybersecurity datasets including obfuscated scripts and SQL injection attempts.
## Intended Use
- Security Information and Event Management (SIEM) integration.
- Automated log auditing.
- DevSecOps pipeline monitoring.
## Limitations
- May produce false positives on complex, valid administrative scripts.
- Only supports text-based logs; does not analyze binary packets.
## Example Code
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("cyber-threat-detector-v1")
model = AutoModelForSequenceClassification.from_pretrained("cyber-threat-detector-v1")
log_line = "SELECT * FROM users WHERE id = '1' OR '1'='1';"
inputs = tokenizer(log_line, return_tensors="pt")
outputs = model(**inputs)
prediction = torch.argmax(outputs.logits)
print("Threat Detected" if prediction == 1 else "Safe") |