fakerbaby nielsr HF Staff commited on
Commit
8553666
Β·
verified Β·
1 Parent(s): f921e66

Update paper link to Hugging Face Papers page (#4)

Browse files

- Update paper link to Hugging Face Papers page (1edbf997c665461f30fa4d44ef27c95fd83ab0f4)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +12 -9
README.md CHANGED
@@ -1,14 +1,15 @@
1
  ---
2
- pipeline_tag: image-text-to-text
3
- library_name: transformers
4
- license: mit
5
- language:
6
- - en
7
  base_model:
8
  - OpenGVLab/InternVL3-38B
 
 
 
 
 
9
  tags:
10
  - Skywork R1V
11
  ---
 
12
  <!-- markdownlint-disable first-line-h1 -->
13
  <!-- markdownlint-disable html -->
14
  <!-- markdownlint-disable no-duplicate-header -->
@@ -27,7 +28,7 @@ tags:
27
 
28
 
29
  <p align="center">
30
- <a href="https://github.com/SkyworkAI/Skywork-R1V/blob/main/Skywork_R1V3.pdf"><strong>πŸ“– R1V3 Report</strong></a> |
31
  <a href="https://github.com/SkyworkAI/Skywork-R1V"><strong>πŸ’» GitHub</strong></a>
32
 
33
  </p>
@@ -60,7 +61,7 @@ Skywork-R1V3 is an advanced, open-source Vision-Language Model (VLM) built on se
60
 
61
  - **Entropy of Critical Reasoning Tokens**: This unique indicator effectively gauges reasoning capability, guiding checkpoint selection during RL training.
62
 
63
- These innovations lead to Broad Reasoning Generalization, allowing our RL-powered approach to successfully extend mathematical reasoning to diverse subject areas. Additionally, our work delves into RL-specific explorations like curriculum learning and learning rate strategies, alongside a broader discussion on multimodal reasoning. For more details, refer to our [[πŸ“– R1V3 Report](https://github.com/SkyworkAI/Skywork-R1V/blob/main/Skywork_R1V3.pdf)]Β .
64
  ## 3. Evaluation
65
 
66
  ### 🌟 Key Results
@@ -140,11 +141,13 @@ def main():
140
  pixel_values = pixel_values[0]
141
  num_patches_list = None
142
 
143
- prompt = "<image>\n"*len(args.image_paths) + args.question
 
144
  generation_config = dict(max_new_tokens=64000, do_sample=True, temperature=0.6, top_p=0.95, repetition_penalty=1.05)
145
  response = model.chat(tokenizer, pixel_values, prompt, generation_config, num_patches_list=num_patches_list)
146
 
147
- print(f'User: {args.question}\nAssistant: {response}')
 
148
 
149
  if __name__ == '__main__':
150
  main()
 
1
  ---
 
 
 
 
 
2
  base_model:
3
  - OpenGVLab/InternVL3-38B
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ license: mit
8
+ pipeline_tag: image-text-to-text
9
  tags:
10
  - Skywork R1V
11
  ---
12
+
13
  <!-- markdownlint-disable first-line-h1 -->
14
  <!-- markdownlint-disable html -->
15
  <!-- markdownlint-disable no-duplicate-header -->
 
28
 
29
 
30
  <p align="center">
31
+ <a href="https://huggingface.co/papers/2507.06167"><strong>πŸ“– R1V3 Report</strong></a> |
32
  <a href="https://github.com/SkyworkAI/Skywork-R1V"><strong>πŸ’» GitHub</strong></a>
33
 
34
  </p>
 
61
 
62
  - **Entropy of Critical Reasoning Tokens**: This unique indicator effectively gauges reasoning capability, guiding checkpoint selection during RL training.
63
 
64
+ These innovations lead to Broad Reasoning Generalization, allowing our RL-powered approach to successfully extend mathematical reasoning to diverse subject areas. Additionally, our work delves into RL-specific explorations like curriculum learning and learning rate strategies, alongside a broader discussion on multimodal reasoning. For more details, refer to our [[πŸ“– R1V3 Report](https://huggingface.co/papers/2507.06167)]Β .
65
  ## 3. Evaluation
66
 
67
  ### 🌟 Key Results
 
141
  pixel_values = pixel_values[0]
142
  num_patches_list = None
143
 
144
+ prompt = "<image>
145
+ "*len(args.image_paths) + args.question
146
  generation_config = dict(max_new_tokens=64000, do_sample=True, temperature=0.6, top_p=0.95, repetition_penalty=1.05)
147
  response = model.chat(tokenizer, pixel_values, prompt, generation_config, num_patches_list=num_patches_list)
148
 
149
+ print(f'User: {args.question}
150
+ Assistant: {response}')
151
 
152
  if __name__ == '__main__':
153
  main()