--- language: vi datasets: - nyamuda/samsum tags: - summarization license: mit widget: - text: ViFortuneAI. --- # ViT5-Base Finetuned on `vietnews` Abstractive Summarization (No prefix needed) State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese. [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/vit5-pretrained-text-to-text-transformer-for/abstractive-text-summarization-on-vietnews)](https://paperswithcode.com/sota/abstractive-text-summarization-on-vietnews?p=vit5-pretrained-text-to-text-transformer-for) ## How to use For more details, do check out [our Github repo](https://github.com/vietai/ViT5) and [eval script](https://github.com/vietai/ViT5/blob/main/eval/Eval_vietnews_sum.ipynb). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model và tokenizer model_name = "ViFortune-AI/ViT5Summer" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) model.cuda() # DỮ LIỆU ĐẦU VÀO CỦA BẠN: nguyên văn hội thoại (giống trong dataset) sentence = "Bạn đã thanh toán cho cà phê không?>> Hmm... tôi nghĩ không phải là vậy, nhưng nó cũng không sao, tôi sẽ thanh toán anh ta mai nhé." # ✅ KHÔNG thêm "summarize:", KHÔNG thêm "" encoding = tokenizer( sentence, return_tensors="pt", max_length=512, truncation=True, padding=False # hoặc "max_length" nếu muốn ) input_ids = encoding["input_ids"].to("cuda") attention_mask = encoding["attention_mask"].to("cuda") # Generate outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_length=256, min_length=10, num_beams=4, early_stopping=True, no_repeat_ngram_size=2, length_penalty=1.0 ) # Decode for output in outputs: summary = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print("Tóm tắt:", summary) ``` ## Citation ``` @inproceedings{phan-etal-2022-vit5, title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation", author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop", year = "2022", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-srw.18", pages = "136--142", } ```