saurabh5 commited on
Commit
e00f0d2
·
verified ·
1 Parent(s): d5287fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -2
README.md CHANGED
@@ -42,14 +42,14 @@ You can use OLMo with the standard HuggingFace transformers library:
42
  from transformers import AutoModelForCausalLM, AutoTokenizer
43
  olmo = AutoModelForCausalLM.from_pretrained("allenai/Olmo-3-7B-Instruct")
44
  tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo-3-7B-Instruct")
45
- message = ["Language modeling is "]
46
  inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
47
  # optional verifying cuda
48
  # inputs = {k: v.to('cuda') for k,v in inputs.items()}
49
  # olmo = olmo.to('cuda')
50
  response = olmo.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
51
  print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
52
- >> 'Language modeling is a key component of any text-based application, but its effectiveness...'
53
  ```
54
 
55
  For faster performance, you can quantize the model using the following method:
@@ -78,6 +78,31 @@ out = list_repo_refs("allenai/Olmo-3-7B-Instruct")
78
  branches = [b.name for b in out.branches]
79
  ```
80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  ### Model Description
82
 
83
  - **Developed by:** Allen Institute for AI (Ai2)
 
42
  from transformers import AutoModelForCausalLM, AutoTokenizer
43
  olmo = AutoModelForCausalLM.from_pretrained("allenai/Olmo-3-7B-Instruct")
44
  tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo-3-7B-Instruct")
45
+ message = ["Who would win in a fight - a dinosaur or a cow named Moo Moo?"]
46
  inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
47
  # optional verifying cuda
48
  # inputs = {k: v.to('cuda') for k,v in inputs.items()}
49
  # olmo = olmo.to('cuda')
50
  response = olmo.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
51
  print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
52
+ >> 'This is a fun and imaginative question! Let’s break it down...'
53
  ```
54
 
55
  For faster performance, you can quantize the model using the following method:
 
78
  branches = [b.name for b in out.branches]
79
  ```
80
 
81
+ ## Chat template
82
+
83
+ ## Default System Message
84
+ The default system prompt for this model is:
85
+ ```
86
+ <|im_start|>system
87
+ You are a helpful function-calling AI assistant.
88
+ You do not currently have access to any functions. <functions></functions><|im_end|>
89
+ ```
90
+
91
+ ## Chat Format
92
+
93
+ The chat template for this model is formatted as:
94
+ ```
95
+ <|im_start|>system
96
+ You are a helpful function-calling AI assistant.
97
+ You do not currently have access to any functions. <functions></functions><|im_end|>
98
+ <|im_start|>user
99
+ Who would win in a fight - a dinosaur or a cow named Moo Moo?<|im_end|>
100
+ <|im_start|>assistant
101
+ This is a fun and imaginative question! Let’s break it down...
102
+ Moo Moo the cow would certinaly win.
103
+ <|endoftext|>
104
+ ```
105
+
106
  ### Model Description
107
 
108
  - **Developed by:** Allen Institute for AI (Ai2)