Update README.md
Browse files
README.md
CHANGED
|
@@ -1,5 +1,201 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# AIM: Autoregressive Image Models
|
| 2 |
+
|
| 3 |
+
*Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar,
|
| 4 |
+
Joshua M Susskind, and Armand Joulin*
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
This software project accompanies the research paper, Scalable Pre-training of Large Autoregressive Image Models.
|
| 8 |
+
|
| 9 |
+
We introduce **AIM** a collection of vision models pre-trained with an autoregressive generative objective.
|
| 10 |
+
We show that autoregressive pre-training of image features exhibits similar scaling properties to their
|
| 11 |
+
textual counterpart (i.e. Large Language Models). Specifically, we highlight two findings:
|
| 12 |
+
1. the model capacity can be trivially scaled to billions of parameters, and
|
| 13 |
+
2. AIM effectively leverages large collections of uncurated image data.
|
| 14 |
+
|
| 15 |
+
## Installation
|
| 16 |
+
Please install PyTorch using the official [installation instructions](https://pytorch.org/get-started/locally/).
|
| 17 |
+
Afterward, install the package as:
|
| 18 |
+
```commandline
|
| 19 |
+
pip install git+https://[email protected]/apple/ml-aim.git
|
| 20 |
+
```
|
| 21 |
+
We also offer [MLX](https://github.com/ml-explore/mlx) backend support for research and experimentation on Apple silicon.
|
| 22 |
+
To enable MLX support, simply run:
|
| 23 |
+
```commandline
|
| 24 |
+
pip install mlx
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Usage
|
| 28 |
+
Below we provide an example of usage in [PyTorch](https://pytorch.org/):
|
| 29 |
+
```python
|
| 30 |
+
from PIL import Image
|
| 31 |
+
|
| 32 |
+
from aim.utils import load_pretrained
|
| 33 |
+
from aim.torch.data import val_transforms
|
| 34 |
+
|
| 35 |
+
img = Image.open(...)
|
| 36 |
+
model = load_pretrained("aim-600M-2B-imgs", backend="torch")
|
| 37 |
+
transform = val_transforms()
|
| 38 |
+
|
| 39 |
+
inp = transform(img).unsqueeze(0)
|
| 40 |
+
logits, _ = model(inp)
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
<details>
|
| 44 |
+
<summary>and in both <a href="https://ml-explore.github.io/mlx/">MLX</a></summary>
|
| 45 |
+
|
| 46 |
+
```python
|
| 47 |
+
from PIL import Image
|
| 48 |
+
import mlx.core as mx
|
| 49 |
+
|
| 50 |
+
from aim.utils import load_pretrained
|
| 51 |
+
from aim.torch.data import val_transforms
|
| 52 |
+
|
| 53 |
+
img = Image.open(...)
|
| 54 |
+
model = load_pretrained("aim-600M-2B-imgs", backend="mlx")
|
| 55 |
+
transform = val_transforms()
|
| 56 |
+
|
| 57 |
+
inp = transform(img).unsqueeze(0)
|
| 58 |
+
inp = mx.array(inp.numpy())
|
| 59 |
+
logits, _ = model(inp)
|
| 60 |
+
```
|
| 61 |
+
</details>
|
| 62 |
+
|
| 63 |
+
<details>
|
| 64 |
+
<summary>and <a href="https://jax.readthedocs.io/">JAX</a></summary>
|
| 65 |
+
|
| 66 |
+
```python
|
| 67 |
+
from PIL import Image
|
| 68 |
+
import jax.numpy as jnp
|
| 69 |
+
|
| 70 |
+
from aim.utils import load_pretrained
|
| 71 |
+
from aim.torch.data import val_transforms
|
| 72 |
+
|
| 73 |
+
img = Image.open(...)
|
| 74 |
+
model, params = load_pretrained("aim-600M-2B-imgs", backend="jax")
|
| 75 |
+
transform = val_transforms()
|
| 76 |
+
|
| 77 |
+
inp = transform(img).unsqueeze(0)
|
| 78 |
+
inp = jnp.array(inp)
|
| 79 |
+
(logits, _), _ = model.apply(params, inp, mutable=['batch_stats'])
|
| 80 |
+
```
|
| 81 |
+
</details>
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
## Pre-trained checkpoints
|
| 85 |
+
|
| 86 |
+
The pre-trained models can be accessed via [PyTorch Hub](https://pytorch.org/hub/) as:
|
| 87 |
+
```python
|
| 88 |
+
import torch
|
| 89 |
+
|
| 90 |
+
aim_600m = torch.hub.load("apple/ml-aim", "aim-600M")
|
| 91 |
+
aim_1b = torch.hub.load("apple/ml-aim", "aim-1B")
|
| 92 |
+
aim_3b = torch.hub.load("apple/ml-aim", "aim-3B")
|
| 93 |
+
aim_7b = torch.hub.load("apple/ml-aim", "aim-7B")
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
### Pre-trained backbones
|
| 97 |
+
|
| 98 |
+
The following table contains pre-trained backbones used in our paper.
|
| 99 |
+
|
| 100 |
+
<table style="margin: auto">
|
| 101 |
+
<thead>
|
| 102 |
+
<tr>
|
| 103 |
+
<th>model</th>
|
| 104 |
+
<th>#params</th>
|
| 105 |
+
<th>attn (best layer)</th>
|
| 106 |
+
<th>backbone, SHA256</th>
|
| 107 |
+
</tr>
|
| 108 |
+
</thead>
|
| 109 |
+
<tbody>
|
| 110 |
+
<tr>
|
| 111 |
+
<td>AIM-0.6B</td>
|
| 112 |
+
<td>0.6B</td>
|
| 113 |
+
<td>79.4%</td>
|
| 114 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_600m_2bimgs_attnprobe_backbone.pth">link</a>, 0d6f6b8f</td>
|
| 115 |
+
</tr>
|
| 116 |
+
<tr>
|
| 117 |
+
<td>AIM-1B</td>
|
| 118 |
+
<td>1B</td>
|
| 119 |
+
<td>82.3%</td>
|
| 120 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_1b_5bimgs_attnprobe_backbone.pth">link</a>, d254ecd3</td>
|
| 121 |
+
</tr>
|
| 122 |
+
<tr>
|
| 123 |
+
<td>AIM-3B</td>
|
| 124 |
+
<td>3B</td>
|
| 125 |
+
<td>83.3%</td>
|
| 126 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_3b_5bimgs_attnprobe_backbone.pth">link</a>, 8475ce4e</td>
|
| 127 |
+
</tr>
|
| 128 |
+
<tr>
|
| 129 |
+
<td>AIM-7B</td>
|
| 130 |
+
<td>7B</td>
|
| 131 |
+
<td>84.0%</td>
|
| 132 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_7b_5bimgs_attnprobe_backbone.pth">link</a>, 184ed94c</td>
|
| 133 |
+
</tr>
|
| 134 |
+
</tbody>
|
| 135 |
+
</table>
|
| 136 |
+
|
| 137 |
+
### Pre-trained attention heads
|
| 138 |
+
|
| 139 |
+
The table below contains the classification results on ImageNet-1k validation set.
|
| 140 |
+
|
| 141 |
+
<table style="margin: auto">
|
| 142 |
+
<thead>
|
| 143 |
+
<tr>
|
| 144 |
+
<th rowspan="2">model</th>
|
| 145 |
+
<th colspan="2">top-1 IN-1k</th>
|
| 146 |
+
<th colspan="2">attention head, SHA256</th>
|
| 147 |
+
</tr>
|
| 148 |
+
<tr>
|
| 149 |
+
<th>last layer</th>
|
| 150 |
+
<th>best layer</th>
|
| 151 |
+
<th>last layer</th>
|
| 152 |
+
<th>best layer</th>
|
| 153 |
+
</tr>
|
| 154 |
+
</thead>
|
| 155 |
+
|
| 156 |
+
<tbody>
|
| 157 |
+
<tr>
|
| 158 |
+
<td>AIM-0.6B</td>
|
| 159 |
+
<td>78.5%</td>
|
| 160 |
+
<td>79.4%</td>
|
| 161 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_600m_2bimgs_attnprobe_head_last_layers.pth">link</a>, 5ce5a341</td>
|
| 162 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_600m_2bimgs_attnprobe_head_best_layers.pth">link</a>, ebd45c05</td>
|
| 163 |
+
</tr>
|
| 164 |
+
<tr>
|
| 165 |
+
<td>AIM-1B</td>
|
| 166 |
+
<td>80.6%</td>
|
| 167 |
+
<td>82.3%</td>
|
| 168 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_1b_5bimgs_attnprobe_head_last_layers.pth">link</a>, db3be2ad</td>
|
| 169 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_1b_5bimgs_attnprobe_head_best_layers.pth">link</a>, f1ed7852</td>
|
| 170 |
+
</tr>
|
| 171 |
+
<tr>
|
| 172 |
+
<td>AIM-3B</td>
|
| 173 |
+
<td>82.2%</td>
|
| 174 |
+
<td>83.3%</td>
|
| 175 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_3b_5bimgs_attnprobe_head_last_layers.pth">link</a>, 5c057b30</td>
|
| 176 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_3b_5bimgs_attnprobe_head_best_layers.pth">link</a>, ad380e16</td>
|
| 177 |
+
</tr>
|
| 178 |
+
<tr>
|
| 179 |
+
<td>AIM-7B</td>
|
| 180 |
+
<td>82.4%</td>
|
| 181 |
+
<td>84.0%</td>
|
| 182 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_7b_5bimgs_attnprobe_head_last_layers.pth">link</a>, 1e5c99ba</td>
|
| 183 |
+
<td><a href="https://huggingface.co/apple/AIM/resolve/main/aim_7b_5bimgs_attnprobe_head_best_layers.pth">link</a>, 73ecd732</td>
|
| 184 |
+
</tr>
|
| 185 |
+
</tbody>
|
| 186 |
+
</table>
|
| 187 |
+
|
| 188 |
+
## Reproducing the IN-1k classification results
|
| 189 |
+
The commands below reproduce the [attention probe results](#pre-trained-attention-heads) on ImageNet-1k
|
| 190 |
+
validation set. We run the evaluation using 1 node with 8 GPUs:
|
| 191 |
+
```commandline
|
| 192 |
+
torchrun --standalone --nnodes=1 --nproc-per-node=8 main_attnprobe.py \
|
| 193 |
+
--model=aim-7B \
|
| 194 |
+
--batch-size=64 \
|
| 195 |
+
--data-path=/path/to/imagenet \
|
| 196 |
+
--probe-layers=last \
|
| 197 |
+
--backbone-ckpt-path=/path/to/backbone_ckpt.pth \
|
| 198 |
+
--head-ckpt-path=/path/to/head_ckpt.pth
|
| 199 |
+
```
|
| 200 |
+
By default, we probe the last 6 layers. To change this, simply pass `--probe-layers=best`.
|
| 201 |
+
|