Update README.md
Browse files
README.md
CHANGED
|
@@ -7,21 +7,43 @@ base_model:
|
|
| 7 |
pipeline_tag: text-generation
|
| 8 |
library_name: transformers
|
| 9 |
---
|
| 10 |
-
# π wrapbow.ai β Creative Ad Copy LLM (Based on Mistral 7B)
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
---
|
| 18 |
|
| 19 |
## β
Base Model
|
|
|
|
| 20 |
- [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
| 21 |
|
| 22 |
---
|
| 23 |
|
| 24 |
-
## π‘ Example Usage
|
| 25 |
|
| 26 |
```python
|
| 27 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
@@ -33,8 +55,10 @@ prompt = "Generate a banner line for 50% discount on women's fashion"
|
|
| 33 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 34 |
outputs = model.generate(**inputs, max_new_tokens=50)
|
| 35 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 36 |
-
|
| 37 |
|
| 38 |
---
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
| 7 |
pipeline_tag: text-generation
|
| 8 |
library_name: transformers
|
| 9 |
---
|
|
|
|
| 10 |
|
| 11 |
+
# π¨ wrapbow.ai β Creative Copy & Ideation LLM
|
| 12 |
+
**Powered by Mistral 7B | Tuned by Ashish Kumar**
|
| 13 |
+
|
| 14 |
+
`wrapbow.ai` is a domain-adapted LLM built on **Mistral-7B-Instruct-v0.2**, finely tuned to generate high-quality marketing, educational, and digital experience content. Designed for creators, marketers, startups, and educators β this model brings your prompts to life with flair and contextual intelligence.
|
| 15 |
+
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
## β¨ Primary Use Cases
|
| 19 |
+
|
| 20 |
+
- πͺ **Creative Ad Banner & Copy Generation**
|
| 21 |
+
Generate punchy headlines, CTAs, and ad taglines for static, HTML5, or video banners.
|
| 22 |
+
|
| 23 |
+
- π’ **Promotional Messaging**
|
| 24 |
+
Ideal for personalized offers, flash sale announcements, and event-based campaigns.
|
| 25 |
+
|
| 26 |
+
- π **Quiz Question Generation** *(for platforms like [pinkslip.in](https://pinkslip.in))*
|
| 27 |
+
Automatically generate skill-based, gamified quiz questions for job-seekers and upskilling portals.
|
| 28 |
+
|
| 29 |
+
- π§ **Prompt-Driven Content Ideation**
|
| 30 |
+
Use it to brainstorm campaign themes, landing page hooks, or social content angles.
|
| 31 |
+
|
| 32 |
+
- ποΈ **Brand Messaging & Positioning Lines**
|
| 33 |
+
Write startup one-liners, value propositions, and feature-focused marketing blurbs.
|
| 34 |
+
|
| 35 |
+
- π§© **Use in EdTech, HRTech, and FinTech Landing Pages**
|
| 36 |
+
Helps founders auto-generate customized landing copy for high conversion across sectors.
|
| 37 |
|
| 38 |
---
|
| 39 |
|
| 40 |
## β
Base Model
|
| 41 |
+
|
| 42 |
- [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
|
| 43 |
|
| 44 |
---
|
| 45 |
|
| 46 |
+
## π‘ Example Usage (Python)
|
| 47 |
|
| 48 |
```python
|
| 49 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 55 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 56 |
outputs = model.generate(**inputs, max_new_tokens=50)
|
| 57 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 58 |
+
```
|
| 59 |
|
| 60 |
---
|
| 61 |
+
|
| 62 |
+
## π License
|
| 63 |
+
|
| 64 |
+
MIT β free to use, remix, and build upon.
|