Create extract_emotions_from_metadata.py
Browse files
extract_emotions_from_metadata.py
ADDED
|
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import json
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import argparse
|
| 7 |
+
from facenet_pytorch import MTCNN
|
| 8 |
+
from hsemotion.facial_emotions import HSEmotionRecognizer
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def detect_largest_face(frame, mtcnn):
|
| 13 |
+
"""Detect faces in a frame using MTCNN and return only the largest face"""
|
| 14 |
+
bounding_boxes, probs = mtcnn.detect(frame, landmarks=False)
|
| 15 |
+
if bounding_boxes is not None and probs is not None:
|
| 16 |
+
# Filter boxes by probability
|
| 17 |
+
valid_indices = probs > 0.9
|
| 18 |
+
bounding_boxes = bounding_boxes[valid_indices]
|
| 19 |
+
|
| 20 |
+
if len(bounding_boxes) > 0:
|
| 21 |
+
# Calculate areas of all detected faces
|
| 22 |
+
areas = []
|
| 23 |
+
for bbox in bounding_boxes:
|
| 24 |
+
x1, y1, x2, y2 = bbox[0:4]
|
| 25 |
+
area = (x2 - x1) * (y2 - y1)
|
| 26 |
+
areas.append(area)
|
| 27 |
+
|
| 28 |
+
# Find the index of the largest face
|
| 29 |
+
largest_index = np.argmax(areas)
|
| 30 |
+
|
| 31 |
+
# Return only the largest face
|
| 32 |
+
return bounding_boxes[largest_index:largest_index+1]
|
| 33 |
+
|
| 34 |
+
return None
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def softmax(x):
|
| 38 |
+
"""Compute softmax values for x"""
|
| 39 |
+
e_x = np.exp(x - np.max(x))
|
| 40 |
+
return e_x / e_x.sum(axis=0)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def process_image_for_emotions(image_path, fer, mtcnn):
|
| 44 |
+
"""Process a single image file and extract emotions"""
|
| 45 |
+
try:
|
| 46 |
+
# Load image using OpenCV for consistency with video processing
|
| 47 |
+
frame_bgr = cv2.imread(image_path)
|
| 48 |
+
if frame_bgr is None:
|
| 49 |
+
print(f"Error: Could not load image {image_path}")
|
| 50 |
+
return None
|
| 51 |
+
|
| 52 |
+
# Convert BGR to RGB
|
| 53 |
+
frame = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
|
| 54 |
+
|
| 55 |
+
# Detect the largest face
|
| 56 |
+
bounding_boxes = detect_largest_face(frame, mtcnn)
|
| 57 |
+
|
| 58 |
+
if bounding_boxes is not None and len(bounding_boxes) > 0:
|
| 59 |
+
# Use the largest detected face
|
| 60 |
+
bbox = bounding_boxes[0]
|
| 61 |
+
box = bbox.astype(int)
|
| 62 |
+
x1, y1, x2, y2 = box[0:4]
|
| 63 |
+
|
| 64 |
+
# Ensure coordinates are within image bounds
|
| 65 |
+
x1 = max(0, x1)
|
| 66 |
+
y1 = max(0, y1)
|
| 67 |
+
x2 = min(frame.shape[1], x2)
|
| 68 |
+
y2 = min(frame.shape[0], y2)
|
| 69 |
+
|
| 70 |
+
# Extract face region
|
| 71 |
+
if x2 > x1 and y2 > y1:
|
| 72 |
+
face_img = frame[y1:y2, x1:x2, :]
|
| 73 |
+
|
| 74 |
+
# Predict emotions with logits=False to get probabilities
|
| 75 |
+
emotion, scores = fer.predict_emotions(face_img, logits=False)
|
| 76 |
+
|
| 77 |
+
# For MTL models, we need to use only the emotion scores (not VA scores)
|
| 78 |
+
if fer.is_mtl:
|
| 79 |
+
scores = scores[:-2] # Remove last 2 elements (VA scores)
|
| 80 |
+
|
| 81 |
+
# Apply softmax to ensure probabilities sum to 1
|
| 82 |
+
probabilities = softmax(scores)
|
| 83 |
+
|
| 84 |
+
# Convert to list for processing
|
| 85 |
+
prob_list = probabilities.tolist() if isinstance(probabilities, np.ndarray) else list(probabilities)
|
| 86 |
+
|
| 87 |
+
# Create emotion probabilities dictionary using idx_to_class from fer
|
| 88 |
+
emotion_probabilities = {}
|
| 89 |
+
for i in range(len(fer.idx_to_class)):
|
| 90 |
+
label = fer.idx_to_class[i]
|
| 91 |
+
emotion_probabilities[label] = round(prob_list[i], 4) if i < len(prob_list) else 0.0
|
| 92 |
+
|
| 93 |
+
# Get emotion index
|
| 94 |
+
dominant_emotion_index = -1
|
| 95 |
+
for idx, label in fer.idx_to_class.items():
|
| 96 |
+
if label == emotion:
|
| 97 |
+
dominant_emotion_index = idx
|
| 98 |
+
break
|
| 99 |
+
|
| 100 |
+
return {
|
| 101 |
+
"emotion_probabilities": emotion_probabilities,
|
| 102 |
+
"dominant_emotion": emotion,
|
| 103 |
+
"dominant_emotion_index": dominant_emotion_index
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
# If no face detected
|
| 107 |
+
print(f"No faces detected in image {image_path}")
|
| 108 |
+
return {
|
| 109 |
+
"emotion_probabilities": None,
|
| 110 |
+
"dominant_emotion": None,
|
| 111 |
+
"dominant_emotion_index": -1
|
| 112 |
+
}
|
| 113 |
+
except Exception as e:
|
| 114 |
+
print(f"Error processing image {image_path}: {e}")
|
| 115 |
+
return None
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def process_video_for_emotions(video_path, fer, mtcnn, skip_frames=5):
|
| 119 |
+
"""Process a single video file and extract average emotions"""
|
| 120 |
+
# Open video file
|
| 121 |
+
cap = cv2.VideoCapture(video_path)
|
| 122 |
+
|
| 123 |
+
if not cap.isOpened():
|
| 124 |
+
print(f"Error: Could not open video {video_path}")
|
| 125 |
+
return None
|
| 126 |
+
|
| 127 |
+
# Get video properties
|
| 128 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 129 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 130 |
+
|
| 131 |
+
# Store emotion data (without fps and frame_count)
|
| 132 |
+
emotion_data = {
|
| 133 |
+
"emotion_probabilities": None,
|
| 134 |
+
"dominant_emotion": None,
|
| 135 |
+
"dominant_emotion_index": None
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
# For averaging emotions across frames
|
| 139 |
+
all_scores = []
|
| 140 |
+
emotion_counts = {}
|
| 141 |
+
|
| 142 |
+
frame_idx = 0
|
| 143 |
+
|
| 144 |
+
while True:
|
| 145 |
+
ret, frame_bgr = cap.read()
|
| 146 |
+
if not ret:
|
| 147 |
+
break
|
| 148 |
+
|
| 149 |
+
# Skip frames if needed
|
| 150 |
+
if frame_idx % skip_frames != 0:
|
| 151 |
+
frame_idx += 1
|
| 152 |
+
continue
|
| 153 |
+
|
| 154 |
+
# Convert BGR to RGB
|
| 155 |
+
frame = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
|
| 156 |
+
|
| 157 |
+
# Detect the largest face
|
| 158 |
+
bounding_boxes = detect_largest_face(frame, mtcnn)
|
| 159 |
+
|
| 160 |
+
if bounding_boxes is not None:
|
| 161 |
+
# Use the largest detected face
|
| 162 |
+
bbox = bounding_boxes[0]
|
| 163 |
+
box = bbox.astype(int)
|
| 164 |
+
x1, y1, x2, y2 = box[0:4]
|
| 165 |
+
|
| 166 |
+
# Ensure coordinates are within frame bounds
|
| 167 |
+
x1 = max(0, x1)
|
| 168 |
+
y1 = max(0, y1)
|
| 169 |
+
x2 = min(frame.shape[1], x2)
|
| 170 |
+
y2 = min(frame.shape[0], y2)
|
| 171 |
+
|
| 172 |
+
# Extract face region
|
| 173 |
+
if x2 > x1 and y2 > y1:
|
| 174 |
+
face_img = frame[y1:y2, x1:x2, :]
|
| 175 |
+
|
| 176 |
+
# Predict emotions with logits=False to get probabilities
|
| 177 |
+
try:
|
| 178 |
+
emotion, scores = fer.predict_emotions(face_img, logits=False)
|
| 179 |
+
|
| 180 |
+
# For MTL models, we need to use only the emotion scores (not VA scores)
|
| 181 |
+
if fer.is_mtl:
|
| 182 |
+
scores = scores[:-2] # Remove last 2 elements (VA scores)
|
| 183 |
+
|
| 184 |
+
# Convert scores to list for JSON serialization
|
| 185 |
+
scores_list = scores.tolist() if isinstance(scores, np.ndarray) else list(scores)
|
| 186 |
+
|
| 187 |
+
# Store scores for averaging
|
| 188 |
+
all_scores.append(scores_list)
|
| 189 |
+
|
| 190 |
+
# Count emotions
|
| 191 |
+
if emotion in emotion_counts:
|
| 192 |
+
emotion_counts[emotion] += 1
|
| 193 |
+
else:
|
| 194 |
+
emotion_counts[emotion] = 1
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
print(f"Error predicting emotions for frame {frame_idx}: {e}")
|
| 198 |
+
|
| 199 |
+
frame_idx += 1
|
| 200 |
+
|
| 201 |
+
# Print progress
|
| 202 |
+
if frame_idx % 30 == 0:
|
| 203 |
+
print(f"Processed {frame_idx}/{frame_count} frames")
|
| 204 |
+
|
| 205 |
+
cap.release()
|
| 206 |
+
|
| 207 |
+
# Calculate average emotions if we have data
|
| 208 |
+
if all_scores:
|
| 209 |
+
# Calculate average scores
|
| 210 |
+
avg_scores = np.mean(np.array(all_scores), axis=0)
|
| 211 |
+
|
| 212 |
+
# Apply softmax to ensure probabilities sum to 1
|
| 213 |
+
probabilities = softmax(avg_scores)
|
| 214 |
+
|
| 215 |
+
# Convert to list for JSON serialization
|
| 216 |
+
prob_list = probabilities.tolist() if isinstance(probabilities, np.ndarray) else list(probabilities)
|
| 217 |
+
|
| 218 |
+
# Find dominant emotion
|
| 219 |
+
dominant_emotion = max(emotion_counts, key=emotion_counts.get)
|
| 220 |
+
|
| 221 |
+
# Create emotion probabilities dictionary using idx_to_class from fer
|
| 222 |
+
emotion_probabilities = {}
|
| 223 |
+
for i in range(len(fer.idx_to_class)):
|
| 224 |
+
label = fer.idx_to_class[i]
|
| 225 |
+
emotion_probabilities[label] = round(prob_list[i], 4) if i < len(prob_list) else 0.0
|
| 226 |
+
|
| 227 |
+
# Get emotion index
|
| 228 |
+
dominant_emotion_index = -1
|
| 229 |
+
for idx, label in fer.idx_to_class.items():
|
| 230 |
+
if label == dominant_emotion:
|
| 231 |
+
dominant_emotion_index = idx
|
| 232 |
+
break
|
| 233 |
+
|
| 234 |
+
# Store in emotion_data
|
| 235 |
+
emotion_data["emotion_probabilities"] = emotion_probabilities
|
| 236 |
+
emotion_data["dominant_emotion"] = dominant_emotion
|
| 237 |
+
emotion_data["dominant_emotion_index"] = dominant_emotion_index
|
| 238 |
+
emotion_data["emotion_distribution"] = emotion_counts
|
| 239 |
+
|
| 240 |
+
return emotion_data
|
| 241 |
+
else:
|
| 242 |
+
print("No faces detected in the video")
|
| 243 |
+
return None
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def process_metadata_file(metadata_path, output_path, model_name='enet_b0_8_best_afew', root_path=None, skip_frames=5):
|
| 247 |
+
"""Process files listed in metadata.json and add emotion information"""
|
| 248 |
+
# Check if CUDA is available
|
| 249 |
+
use_cuda = torch.cuda.is_available()
|
| 250 |
+
device = 'cuda' if use_cuda else 'cpu'
|
| 251 |
+
print(f"Using device: {device}")
|
| 252 |
+
|
| 253 |
+
# Initialize MTCNN for face detection
|
| 254 |
+
mtcnn = MTCNN(keep_all=False, post_process=False, min_face_size=40, device=device)
|
| 255 |
+
|
| 256 |
+
# Initialize HSEmotionRecognizer
|
| 257 |
+
fer = HSEmotionRecognizer(model_name=model_name, device=device)
|
| 258 |
+
|
| 259 |
+
# Read metadata file
|
| 260 |
+
with open(metadata_path, 'r') as f:
|
| 261 |
+
metadata_list = json.load(f)
|
| 262 |
+
|
| 263 |
+
# Process each file in metadata and add emotion information
|
| 264 |
+
for metadata in metadata_list:
|
| 265 |
+
file_path = metadata.get("file_path")
|
| 266 |
+
file_type = metadata.get("type", "unknown")
|
| 267 |
+
|
| 268 |
+
# If root_path is provided, join it with the file_path
|
| 269 |
+
if root_path and file_path:
|
| 270 |
+
file_path = os.path.join(root_path, file_path)
|
| 271 |
+
|
| 272 |
+
if not file_path or not os.path.exists(file_path):
|
| 273 |
+
print(f"File not found: {file_path}")
|
| 274 |
+
# Add empty emotion data
|
| 275 |
+
metadata["emotion"] = {
|
| 276 |
+
"emotion_probabilities": None,
|
| 277 |
+
"dominant_emotion": None,
|
| 278 |
+
"dominant_emotion_index": -1
|
| 279 |
+
}
|
| 280 |
+
continue
|
| 281 |
+
|
| 282 |
+
print(f"Processing {file_type} file: {file_path}")
|
| 283 |
+
|
| 284 |
+
try:
|
| 285 |
+
if file_type == "video":
|
| 286 |
+
result = process_video_for_emotions(file_path, fer, mtcnn, skip_frames)
|
| 287 |
+
elif file_type == "image":
|
| 288 |
+
result = process_image_for_emotions(file_path, fer, mtcnn)
|
| 289 |
+
else:
|
| 290 |
+
print(f"Unknown file type: {file_type}")
|
| 291 |
+
# Add empty emotion data
|
| 292 |
+
metadata["emotion"] = {
|
| 293 |
+
"emotion_probabilities": None,
|
| 294 |
+
"dominant_emotion": None,
|
| 295 |
+
"dominant_emotion_index": -1
|
| 296 |
+
}
|
| 297 |
+
continue
|
| 298 |
+
|
| 299 |
+
# Add emotion data to metadata
|
| 300 |
+
if result:
|
| 301 |
+
metadata["emotion"] = result
|
| 302 |
+
else:
|
| 303 |
+
# Add empty emotion data if processing failed
|
| 304 |
+
metadata["emotion"] = {
|
| 305 |
+
"emotion_probabilities": None,
|
| 306 |
+
"dominant_emotion": None,
|
| 307 |
+
"dominant_emotion_index": -1
|
| 308 |
+
}
|
| 309 |
+
except Exception as e:
|
| 310 |
+
print(f"Error processing file {file_path}: {e}")
|
| 311 |
+
# Add empty emotion data if processing failed
|
| 312 |
+
metadata["emotion"] = {
|
| 313 |
+
"emotion_probabilities": None,
|
| 314 |
+
"dominant_emotion": None,
|
| 315 |
+
"dominant_emotion_index": -1
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
# Save updated metadata to output file
|
| 319 |
+
with open(output_path, 'w') as f:
|
| 320 |
+
json.dump(metadata_list, f, indent=2)
|
| 321 |
+
|
| 322 |
+
print(f"Updated metadata with emotion data saved to {output_path}")
|
| 323 |
+
print(f"Processed {len(metadata_list)} files")
|
| 324 |
+
return output_path
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
def main():
|
| 328 |
+
# Create argument parser
|
| 329 |
+
parser = argparse.ArgumentParser(description='Extract emotions from files listed in metadata.json')
|
| 330 |
+
parser.add_argument('--input', '-i', type=str, default='metadata.json',
|
| 331 |
+
help='Input metadata JSON file (default: metadata.json)')
|
| 332 |
+
parser.add_argument('--output', '-o', type=str, default='metadata_with_emotions.json',
|
| 333 |
+
help='Output metadata JSON file with emotion data (default: metadata_with_emotions.json)')
|
| 334 |
+
parser.add_argument('--model', '-m', type=str, default='enet_b0_8_best_afew',
|
| 335 |
+
choices=['enet_b0_8_best_afew', 'enet_b0_8_best_vgaf', 'enet_b0_8_va_mtl', 'enet_b2_8', 'enet_b2_7'],
|
| 336 |
+
help='Model to use for emotion recognition')
|
| 337 |
+
parser.add_argument('--root', '-r', type=str, default=None,
|
| 338 |
+
help='Root path to prepend to file paths (default: None)')
|
| 339 |
+
parser.add_argument('--skip-frames', '-s', type=int, default=5,
|
| 340 |
+
help='Number of frames to skip between emotion detections (default: 5)')
|
| 341 |
+
|
| 342 |
+
# Parse arguments
|
| 343 |
+
args = parser.parse_args()
|
| 344 |
+
|
| 345 |
+
# Process files
|
| 346 |
+
output_path = process_metadata_file(args.input, args.output, args.model, args.root, args.skip_frames)
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
if __name__ == "__main__":
|
| 351 |
+
main()
|