Add model implementation files for trust_remote_code support
Browse files- configuration_nanogpt.py +26 -0
- modeling_nanogpt.py +155 -0
configuration_nanogpt.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""NanoGPT model configuration"""
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
class NanoGPTConfig(PretrainedConfig):
|
| 6 |
+
model_type = "nanogpt"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
vocab_size=50257,
|
| 11 |
+
n_embd=768,
|
| 12 |
+
n_head=12,
|
| 13 |
+
n_layer=12,
|
| 14 |
+
block_size=1024,
|
| 15 |
+
bias=True,
|
| 16 |
+
dropout=0.0,
|
| 17 |
+
**kwargs
|
| 18 |
+
):
|
| 19 |
+
super().__init__(**kwargs)
|
| 20 |
+
self.vocab_size = vocab_size
|
| 21 |
+
self.n_embd = n_embd
|
| 22 |
+
self.n_head = n_head
|
| 23 |
+
self.n_layer = n_layer
|
| 24 |
+
self.block_size = block_size
|
| 25 |
+
self.bias = bias
|
| 26 |
+
self.dropout = dropout
|
modeling_nanogpt.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""NanoGPT model implementation"""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import math
|
| 7 |
+
from transformers import PreTrainedModel
|
| 8 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
| 9 |
+
from .configuration_nanogpt import NanoGPTConfig
|
| 10 |
+
|
| 11 |
+
class ExactNanoGPTAttention(nn.Module):
|
| 12 |
+
def __init__(self, config):
|
| 13 |
+
super().__init__()
|
| 14 |
+
assert config.n_embd % config.n_head == 0
|
| 15 |
+
|
| 16 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
| 17 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
| 18 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
| 19 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
| 20 |
+
self.n_head = config.n_head
|
| 21 |
+
self.n_embd = config.n_embd
|
| 22 |
+
self.dropout = config.dropout
|
| 23 |
+
|
| 24 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
|
| 25 |
+
if not self.flash:
|
| 26 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
| 27 |
+
.view(1, 1, config.block_size, config.block_size))
|
| 28 |
+
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
B, T, C = x.size()
|
| 31 |
+
|
| 32 |
+
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
|
| 33 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 34 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 35 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
| 36 |
+
|
| 37 |
+
if self.flash:
|
| 38 |
+
y = torch.nn.functional.scaled_dot_product_attention(
|
| 39 |
+
q, k, v,
|
| 40 |
+
attn_mask=None,
|
| 41 |
+
dropout_p=self.dropout if self.training else 0,
|
| 42 |
+
is_causal=True
|
| 43 |
+
)
|
| 44 |
+
else:
|
| 45 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 46 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
| 47 |
+
att = F.softmax(att, dim=-1)
|
| 48 |
+
att = self.attn_dropout(att)
|
| 49 |
+
y = att @ v
|
| 50 |
+
|
| 51 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 52 |
+
y = self.resid_dropout(self.c_proj(y))
|
| 53 |
+
return y
|
| 54 |
+
|
| 55 |
+
class ExactNanoGPTMLP(nn.Module):
|
| 56 |
+
def __init__(self, config):
|
| 57 |
+
super().__init__()
|
| 58 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
| 59 |
+
self.gelu = nn.GELU()
|
| 60 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
| 61 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 62 |
+
|
| 63 |
+
def forward(self, x):
|
| 64 |
+
x = self.c_fc(x)
|
| 65 |
+
x = self.gelu(x)
|
| 66 |
+
x = self.c_proj(x)
|
| 67 |
+
x = self.dropout(x)
|
| 68 |
+
return x
|
| 69 |
+
|
| 70 |
+
class ExactNanoGPTBlock(nn.Module):
|
| 71 |
+
def __init__(self, config):
|
| 72 |
+
super().__init__()
|
| 73 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 74 |
+
self.attn = ExactNanoGPTAttention(config)
|
| 75 |
+
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
|
| 76 |
+
self.mlp = ExactNanoGPTMLP(config)
|
| 77 |
+
|
| 78 |
+
def forward(self, x):
|
| 79 |
+
x = x + self.attn(self.ln_1(x))
|
| 80 |
+
x = x + self.mlp(self.ln_2(x))
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
class NanoGPTModel(PreTrainedModel):
|
| 84 |
+
config_class = NanoGPTConfig
|
| 85 |
+
|
| 86 |
+
def __init__(self, config):
|
| 87 |
+
super().__init__(config)
|
| 88 |
+
self.config = config
|
| 89 |
+
|
| 90 |
+
self.transformer = nn.ModuleDict(dict(
|
| 91 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
| 92 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
| 93 |
+
drop = nn.Dropout(config.dropout),
|
| 94 |
+
h = nn.ModuleList([ExactNanoGPTBlock(config) for _ in range(config.n_layer)]),
|
| 95 |
+
ln_f = nn.LayerNorm(config.n_embd, bias=config.bias),
|
| 96 |
+
))
|
| 97 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 98 |
+
|
| 99 |
+
self.post_init()
|
| 100 |
+
|
| 101 |
+
def forward(self, input_ids, attention_mask=None, **kwargs):
|
| 102 |
+
device = input_ids.device
|
| 103 |
+
b, t = input_ids.size()
|
| 104 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
| 105 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device)
|
| 106 |
+
|
| 107 |
+
tok_emb = self.transformer.wte(input_ids)
|
| 108 |
+
pos_emb = self.transformer.wpe(pos)
|
| 109 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
| 110 |
+
for block in self.transformer.h:
|
| 111 |
+
x = block(x)
|
| 112 |
+
x = self.transformer.ln_f(x)
|
| 113 |
+
|
| 114 |
+
logits = self.lm_head(x)
|
| 115 |
+
|
| 116 |
+
return CausalLMOutputWithCrossAttentions(logits=logits)
|
| 117 |
+
|
| 118 |
+
def generate(self, input_ids, max_length=None, max_new_tokens=None, temperature=1.0, top_k=None, do_sample=True, top_p=None, **kwargs):
|
| 119 |
+
if max_new_tokens is None:
|
| 120 |
+
max_new_tokens = max_length - input_ids.shape[1] if max_length else 50
|
| 121 |
+
|
| 122 |
+
for _ in range(max_new_tokens):
|
| 123 |
+
idx_cond = input_ids if input_ids.size(1) <= self.config.block_size else input_ids[:, -self.config.block_size:]
|
| 124 |
+
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
outputs = self(idx_cond)
|
| 127 |
+
logits = outputs.logits
|
| 128 |
+
|
| 129 |
+
logits = logits[:, -1, :] / temperature
|
| 130 |
+
|
| 131 |
+
if top_k is not None:
|
| 132 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 133 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
| 134 |
+
|
| 135 |
+
if top_p is not None:
|
| 136 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 137 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 138 |
+
|
| 139 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 140 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 141 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 142 |
+
|
| 143 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
| 144 |
+
logits[indices_to_remove] = -float('Inf')
|
| 145 |
+
|
| 146 |
+
probs = F.softmax(logits, dim=-1)
|
| 147 |
+
|
| 148 |
+
if do_sample:
|
| 149 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
| 150 |
+
else:
|
| 151 |
+
_, idx_next = torch.topk(probs, k=1, dim=-1)
|
| 152 |
+
|
| 153 |
+
input_ids = torch.cat((input_ids, idx_next), dim=1)
|
| 154 |
+
|
| 155 |
+
return input_ids
|