Dexora commited on
Commit
0c1fc29
Β·
verified Β·
1 Parent(s): 9eff1a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -15,7 +15,7 @@ license: mit
15
  ## πŸ”₯ News & Updates
16
 
17
 
18
- - **2025-12-03**: Released the full **Real-World Dataset** (**10K episodes**) on Hugging Face.
19
 
20
  --
21
 
@@ -31,15 +31,15 @@ The Dexora real-world dataset consists of **11.5K teleoperated episodes**, **2.9
31
  <img src="assets/image/dataset.gif" alt="Dexora Multi-view Dataset" width="100%">
32
  </p>
33
 
34
- <p align="center">
35
- <i>Video 1. <b>Synchronized Multi-View Recordings.</b> High-resolution streams from ego-centric, third-person, and wrist-mounted cameras, synchronized with 36-DoF robot proprioception.</i>
36
  </p>
37
 
38
  <p align="center">
39
  <img src="assets/image/real-data.JPG" alt="Dexora Real-World Dataset Mosaic" width="100%">
40
  </p>
41
 
42
- <p align="center">
43
  <i>Fig 1. <b>High-Fidelity Real-World Scenes.</b> Collected via our hybrid teleoperation system (Exoskeleton for arm + Vision Pro for hand), this dataset covers <b>347 objects</b> across diverse environments. It captures varying lighting conditions, background clutter, and precise bimanual interactions essential for robust policy learning. Panels (a–d) correspond to four task categories: <b>pick-and-place</b>, <b>assembly</b>, <b>articulation</b>, and <b>dexterous manipulation</b>.</i>
44
  </p>
45
 
@@ -51,7 +51,7 @@ The Dexora real-world dataset consists of **11.5K teleoperated episodes**, **2.9
51
  <img src="assets/image/Robot%20Arm%20Task%20Trajectory%20Distribution.png" alt="Dexora Robot Arm Trajectory Distribution" width="120%">
52
  </p>
53
 
54
- <p align="center">
55
  <i>Fig 2. <b>Task Categories & Action Distribution.</b> Unlike standard gripper datasets, Dexora emphasizes high-DoF dexterity. The real-world data distribution includes <b>Dexterous Manipulation (20%)</b> (e.g., <i>Twist Cap</i>, <i>Use Pen</i>, <i>Cut Leek</i>) and <b>Assembly (15%)</b> (e.g., <i>Separate Nested Bowls</i>, <i>Stack Ring Blocks</i>), in addition to <b>Articulated Objects (10%)</b> and <b>Pick-and-Place (55%)</b>.</i>
56
  </p>
57
 
@@ -92,7 +92,7 @@ The Dexora simulation dataset contains **100K episodes** generated in **MuJoCo**
92
 
93
  | **Split** | **Episodes** | **Frames** | **Hours (approx.)** | **Task Types** |
94
  | :--------------- | -----------: | ---------: | -------------------: | :----------------------------------------------------------------------------- |
95
- | **Simulated** | **100K** | **6.5M** | TBD | Pick-and-place, assembly, articulation |
96
  | **Real-World** | **10K** | **3.2M** | **177.5** | Teleoperated bimanual tasks with high-DoF hands, cluttered scenes, fine-grain object interactions |
97
 
98
 
@@ -396,7 +396,7 @@ data
396
  }
397
  ```
398
 
399
- ## πŸ“₯ Usage
400
 
401
  ### 1. Environment Setup
402
 
@@ -454,7 +454,7 @@ print("Language Instruction:", df["language_instruction"][0])
454
  ```
455
 
456
  ---
457
-
458
  ## πŸ“œ Citation
459
 
460
  If you find Dexora useful in your research, please consider citing our paper:
 
15
  ## πŸ”₯ News & Updates
16
 
17
 
18
+ - **2025-12-03**: Released the full **Real-World Dataset** (**11.5K episodes**) on [Hugging Face](https://huggingface.co/datasets/Dexora/Dexora_Real-World_Dataset).
19
 
20
  --
21
 
 
31
  <img src="assets/image/dataset.gif" alt="Dexora Multi-view Dataset" width="100%">
32
  </p>
33
 
34
+ <p>
35
+ <i>Video 1. <b>Synchronized Multi-View Recordings.</b> High-resolution streams from four synchronized views β€” an ego-centric head-mounted camera, left and right wrist-mounted cameras, and a static third-person scene camera β€” synchronized with 36-DoF robot proprioception.</i>
36
  </p>
37
 
38
  <p align="center">
39
  <img src="assets/image/real-data.JPG" alt="Dexora Real-World Dataset Mosaic" width="100%">
40
  </p>
41
 
42
+ <p>
43
  <i>Fig 1. <b>High-Fidelity Real-World Scenes.</b> Collected via our hybrid teleoperation system (Exoskeleton for arm + Vision Pro for hand), this dataset covers <b>347 objects</b> across diverse environments. It captures varying lighting conditions, background clutter, and precise bimanual interactions essential for robust policy learning. Panels (a–d) correspond to four task categories: <b>pick-and-place</b>, <b>assembly</b>, <b>articulation</b>, and <b>dexterous manipulation</b>.</i>
44
  </p>
45
 
 
51
  <img src="assets/image/Robot%20Arm%20Task%20Trajectory%20Distribution.png" alt="Dexora Robot Arm Trajectory Distribution" width="120%">
52
  </p>
53
 
54
+ <p>
55
  <i>Fig 2. <b>Task Categories & Action Distribution.</b> Unlike standard gripper datasets, Dexora emphasizes high-DoF dexterity. The real-world data distribution includes <b>Dexterous Manipulation (20%)</b> (e.g., <i>Twist Cap</i>, <i>Use Pen</i>, <i>Cut Leek</i>) and <b>Assembly (15%)</b> (e.g., <i>Separate Nested Bowls</i>, <i>Stack Ring Blocks</i>), in addition to <b>Articulated Objects (10%)</b> and <b>Pick-and-Place (55%)</b>.</i>
56
  </p>
57
 
 
92
 
93
  | **Split** | **Episodes** | **Frames** | **Hours (approx.)** | **Task Types** |
94
  | :--------------- | -----------: | ---------: | -------------------: | :----------------------------------------------------------------------------- |
95
+ | **Simulated** | **β€”β€”** | **β€”β€”** | TBD | Pick-and-place, assembly, articulation |
96
  | **Real-World** | **10K** | **3.2M** | **177.5** | Teleoperated bimanual tasks with high-DoF hands, cluttered scenes, fine-grain object interactions |
97
 
98
 
 
396
  }
397
  ```
398
 
399
+ <!-- ## πŸ“₯ Usage
400
 
401
  ### 1. Environment Setup
402
 
 
454
  ```
455
 
456
  ---
457
+ -->
458
  ## πŸ“œ Citation
459
 
460
  If you find Dexora useful in your research, please consider citing our paper: