GenerTeam commited on
Commit
7540774
·
verified ·
1 Parent(s): 488f03c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -31
README.md CHANGED
@@ -1,31 +1,40 @@
1
- ---
2
- license: mit
3
- task_categories:
4
- - text-generation
5
- tags:
6
- - biology
7
- - genomics
8
- - long-context
9
- ---
10
-
11
- ## How to use
12
-
13
- ```python
14
- from datasets import load_dataset
15
-
16
- datasets = load_dataset("GenerTeam/next_kmer_prediction")
17
- ```
18
-
19
- ## Citation
20
-
21
- ```bibtex
22
- @misc{wu2025generator,
23
- title={GENERator: A Long-Context Generative Genomic Foundation Model},
24
- author={Wei Wu and Qiuyi Li and Mingyang Li and Kun Fu and Fuli Feng and Jieping Ye and Hui Xiong and Zheng Wang},
25
- year={2025},
26
- eprint={2502.07272},
27
- archivePrefix={arXiv},
28
- primaryClass={cs.CL},
29
- url={https://arxiv.org/abs/2502.07272},
30
- }
31
- ```
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - text-generation
5
+ tags:
6
+ - biology
7
+ - genomics
8
+ - long-context
9
+ ---
10
+
11
+ # Next K-mer Prediction
12
+
13
+ ## Abouts
14
+ The Next K-mer Prediction task is a zero-shot evaluation method introduced in the **GENERator** paper to assess the quality of pretrained models. It involves inputting a sequence segment into the model and having it predict the next K base pairs. The predicted sequence is then compared to the actual sequence to assess accuracy.
15
+ * **Sequence**: The input sequence has a maximum length of 96k base pairs (bp). You can control the number of input tokens by applying **left** truncation.
16
+ * **Label**: The next 128 bp immediately following the end of the input sequence.
17
+
18
+ Note: Prediction time may increase significantly for longer input sequences. It is strongly recommended to begin testing with a smaller number of input tokens to optimize performance.
19
+
20
+ ## How to use
21
+
22
+ ```python
23
+ from datasets import load_dataset
24
+
25
+ datasets = load_dataset("GenerTeam/next_kmer_prediction")
26
+ ```
27
+
28
+ ## Citation
29
+
30
+ ```bibtex
31
+ @misc{wu2025generator,
32
+ title={GENERator: A Long-Context Generative Genomic Foundation Model},
33
+ author={Wei Wu and Qiuyi Li and Mingyang Li and Kun Fu and Fuli Feng and Jieping Ye and Hui Xiong and Zheng Wang},
34
+ year={2025},
35
+ eprint={2502.07272},
36
+ archivePrefix={arXiv},
37
+ primaryClass={cs.CL},
38
+ url={https://arxiv.org/abs/2502.07272},
39
+ }
40
+ ```