Datasets:
Create
Browse files
train.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from tensorflow.keras import layers
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Tuple, List
|
| 6 |
+
import logging
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import json
|
| 10 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 11 |
+
from ta.trend import SMAIndicator, EMAIndicator, MACD
|
| 12 |
+
from ta.momentum import RSIIndicator
|
| 13 |
+
from ta.volatility import BollingerBands
|
| 14 |
+
|
| 15 |
+
# Set up logging
|
| 16 |
+
logging.basicConfig(
|
| 17 |
+
level=logging.INFO,
|
| 18 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
| 19 |
+
)
|
| 20 |
+
logger = logging.getLogger(__name__)
|
| 21 |
+
|
| 22 |
+
class DataPreprocessor:
|
| 23 |
+
"""Handles data loading and preprocessing"""
|
| 24 |
+
|
| 25 |
+
def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
|
| 26 |
+
with open(config_path) as f:
|
| 27 |
+
self.config = json.load(f)
|
| 28 |
+
self.scalers = {}
|
| 29 |
+
|
| 30 |
+
def load_data(self, data_path: str) -> pd.DataFrame:
|
| 31 |
+
"""Load data from CSV and add technical indicators"""
|
| 32 |
+
df = pd.read_csv(data_path)
|
| 33 |
+
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
| 34 |
+
df = df.sort_values('timestamp')
|
| 35 |
+
|
| 36 |
+
# Add technical indicators
|
| 37 |
+
df = self.add_technical_indicators(df)
|
| 38 |
+
|
| 39 |
+
return df
|
| 40 |
+
|
| 41 |
+
def add_technical_indicators(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 42 |
+
"""Add technical analysis indicators"""
|
| 43 |
+
# SMA
|
| 44 |
+
df['sma_20'] = SMAIndicator(close=df['price'], window=20).sma_indicator()
|
| 45 |
+
df['sma_50'] = SMAIndicator(close=df['price'], window=50).sma_indicator()
|
| 46 |
+
|
| 47 |
+
# EMA
|
| 48 |
+
df['ema_20'] = EMAIndicator(close=df['price'], window=20).ema_indicator()
|
| 49 |
+
|
| 50 |
+
# MACD
|
| 51 |
+
macd = MACD(close=df['price'])
|
| 52 |
+
df['macd'] = macd.macd()
|
| 53 |
+
df['macd_signal'] = macd.macd_signal()
|
| 54 |
+
|
| 55 |
+
# RSI
|
| 56 |
+
df['rsi'] = RSIIndicator(close=df['price']).rsi()
|
| 57 |
+
|
| 58 |
+
# Bollinger Bands
|
| 59 |
+
bb = BollingerBands(close=df['price'])
|
| 60 |
+
df['bb_high'] = bb.bollinger_hband()
|
| 61 |
+
df['bb_low'] = bb.bollinger_lband()
|
| 62 |
+
|
| 63 |
+
return df
|
| 64 |
+
|
| 65 |
+
def prepare_sequences(self, df: pd.DataFrame) -> Tuple[np.ndarray, np.ndarray]:
|
| 66 |
+
"""Create sequences for training"""
|
| 67 |
+
sequence_length = self.config['data']['sequence_length']
|
| 68 |
+
|
| 69 |
+
# Scale features
|
| 70 |
+
for column in df.select_dtypes(include=[np.number]).columns:
|
| 71 |
+
if column not in self.scalers:
|
| 72 |
+
self.scalers[column] = MinMaxScaler()
|
| 73 |
+
df[column] = self.scalers[column].fit_transform(df[[column]])
|
| 74 |
+
|
| 75 |
+
# Create sequences
|
| 76 |
+
sequences = []
|
| 77 |
+
targets = []
|
| 78 |
+
|
| 79 |
+
for i in range(len(df) - sequence_length):
|
| 80 |
+
sequence = df.iloc[i:i + sequence_length]
|
| 81 |
+
target = df.iloc[i + sequence_length]['price']
|
| 82 |
+
sequences.append(sequence)
|
| 83 |
+
targets.append(target)
|
| 84 |
+
|
| 85 |
+
return np.array(sequences), np.array(targets)
|
| 86 |
+
|
| 87 |
+
class TransformerBlock(layers.Layer):
|
| 88 |
+
"""Transformer block with multi-head attention"""
|
| 89 |
+
|
| 90 |
+
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
|
| 91 |
+
super().__init__()
|
| 92 |
+
self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
|
| 93 |
+
self.ffn = tf.keras.Sequential([
|
| 94 |
+
layers.Dense(ff_dim, activation="relu"),
|
| 95 |
+
layers.Dense(embed_dim),
|
| 96 |
+
])
|
| 97 |
+
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
|
| 98 |
+
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
|
| 99 |
+
self.dropout1 = layers.Dropout(rate)
|
| 100 |
+
self.dropout2 = layers.Dropout(rate)
|
| 101 |
+
|
| 102 |
+
def call(self, inputs, training):
|
| 103 |
+
attn_output = self.att(inputs, inputs)
|
| 104 |
+
attn_output = self.dropout1(attn_output, training=training)
|
| 105 |
+
out1 = self.layernorm1(inputs + attn_output)
|
| 106 |
+
ffn_output = self.ffn(out1)
|
| 107 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
| 108 |
+
return self.layernorm2(out1 + ffn_output)
|
| 109 |
+
|
| 110 |
+
class CryptoTransformer(tf.keras.Model):
|
| 111 |
+
"""Main transformer model for cryptocurrency prediction"""
|
| 112 |
+
|
| 113 |
+
def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
|
| 114 |
+
super().__init__()
|
| 115 |
+
|
| 116 |
+
with open(config_path) as f:
|
| 117 |
+
self.config = json.load(f)
|
| 118 |
+
|
| 119 |
+
# Model parameters
|
| 120 |
+
self.num_layers = self.config['model']['n_layers']
|
| 121 |
+
self.d_model = self.config['model']['d_model']
|
| 122 |
+
self.num_heads = self.config['model']['n_heads']
|
| 123 |
+
self.ff_dim = self.config['model']['d_ff']
|
| 124 |
+
self.dropout = self.config['model']['dropout']
|
| 125 |
+
|
| 126 |
+
# Layers
|
| 127 |
+
self.transformer_blocks = [
|
| 128 |
+
TransformerBlock(self.d_model, self.num_heads, self.ff_dim, self.dropout)
|
| 129 |
+
for _ in range(self.num_layers)
|
| 130 |
+
]
|
| 131 |
+
self.dropout = layers.Dropout(self.dropout)
|
| 132 |
+
self.dense = layers.Dense(1) # Final prediction layer
|
| 133 |
+
|
| 134 |
+
def call(self, inputs):
|
| 135 |
+
x = inputs
|
| 136 |
+
for transformer_block in self.transformer_blocks:
|
| 137 |
+
x = transformer_block(x)
|
| 138 |
+
x = layers.GlobalAveragePooling1D()(x)
|
| 139 |
+
x = self.dropout(x)
|
| 140 |
+
return self.dense(x)
|
| 141 |
+
|
| 142 |
+
def train_model():
|
| 143 |
+
"""Main training function"""
|
| 144 |
+
logger.info("Starting model training")
|
| 145 |
+
|
| 146 |
+
# Initialize preprocessor and load data
|
| 147 |
+
preprocessor = DataPreprocessor()
|
| 148 |
+
df = preprocessor.load_data('data/training/kraken_trades.csv')
|
| 149 |
+
|
| 150 |
+
# Prepare sequences
|
| 151 |
+
X, y = preprocessor.prepare_sequences(df)
|
| 152 |
+
|
| 153 |
+
# Split data
|
| 154 |
+
train_size = int(0.8 * len(X))
|
| 155 |
+
X_train, X_test = X[:train_size], X[train_size:]
|
| 156 |
+
y_train, y_test = y[:train_size], y[train_size:]
|
| 157 |
+
|
| 158 |
+
# Initialize model
|
| 159 |
+
model = CryptoTransformer()
|
| 160 |
+
|
| 161 |
+
# Compile model
|
| 162 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
|
| 163 |
+
model.compile(
|
| 164 |
+
optimizer=optimizer,
|
| 165 |
+
loss='mse',
|
| 166 |
+
metrics=['mae']
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# Train model
|
| 170 |
+
history = model.fit(
|
| 171 |
+
X_train, y_train,
|
| 172 |
+
epochs=100,
|
| 173 |
+
batch_size=32,
|
| 174 |
+
validation_data=(X_test, y_test),
|
| 175 |
+
callbacks=[
|
| 176 |
+
tf.keras.callbacks.EarlyStopping(
|
| 177 |
+
monitor='val_loss',
|
| 178 |
+
patience=10,
|
| 179 |
+
restore_best_weights=True
|
| 180 |
+
),
|
| 181 |
+
tf.keras.callbacks.ModelCheckpoint(
|
| 182 |
+
'models/crypto_transformer_{epoch}.h5',
|
| 183 |
+
save_best_only=True,
|
| 184 |
+
monitor='val_loss'
|
| 185 |
+
),
|
| 186 |
+
tf.keras.callbacks.TensorBoard(log_dir='logs')
|
| 187 |
+
]
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# Save final model
|
| 191 |
+
model.save('models/crypto_transformer_final')
|
| 192 |
+
|
| 193 |
+
# Save training history
|
| 194 |
+
pd.DataFrame(history.history).to_csv('models/training_history.csv')
|
| 195 |
+
|
| 196 |
+
logger.info("Training completed")
|
| 197 |
+
return model, history
|
| 198 |
+
|
| 199 |
+
if __name__ == "__main__":
|
| 200 |
+
# Create necessary directories
|
| 201 |
+
Path('models').mkdir(exist_ok=True)
|
| 202 |
+
Path('logs').mkdir(exist_ok=True)
|
| 203 |
+
|
| 204 |
+
# Train model
|
| 205 |
+
model, history = train_model()
|