Datasets:
Inflate dataset
Browse files- .gitattributes +4 -0
- README.md +9 -0
- challenge.json +3 -0
- dev.json +3 -0
- test.json +3 -0
- train.json +3 -0
- webnlgqa.py +199 -0
.gitattributes
CHANGED
|
@@ -53,3 +53,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
train.json filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
dev.json filter=lfs diff=lfs merge=lfs -text
|
| 58 |
+
test.json filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
challenge.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,12 @@
|
|
| 1 |
---
|
| 2 |
license: cc-by-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
| 1 |
---
|
| 2 |
license: cc-by-sa-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- conversational
|
| 5 |
+
- question-answering
|
| 6 |
+
- text-generation
|
| 7 |
+
tags:
|
| 8 |
+
- qa
|
| 9 |
+
- knowledge-graph
|
| 10 |
+
language:
|
| 11 |
+
- en
|
| 12 |
---
|
challenge.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd2f4fc1e61d2e9ef9a059bb15a4cc6ef1c1c68534ee80474be53a6cf6026f4b
|
| 3 |
+
size 968686
|
dev.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0518c960195c31ad995fb0b700cb0b84ed4f6717365a1416c7c1ee143928300f
|
| 3 |
+
size 10345623
|
test.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1390503972269520e74edc2f3489114c488b05ab3310be36cc2e3f0ead92ccd4
|
| 3 |
+
size 11856922
|
train.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f77a46ef327cf8f0a56cefd1bbd170bc64551c7fbba10db9e289e26f1f80acd
|
| 3 |
+
size 82137230
|
webnlgqa.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import zipfile
|
| 3 |
+
import json
|
| 4 |
+
import base64
|
| 5 |
+
import sys
|
| 6 |
+
import traceback
|
| 7 |
+
|
| 8 |
+
import datasets
|
| 9 |
+
|
| 10 |
+
_CITATION = """\
|
| 11 |
+
@inproceedings{lecorve2022sparql2text,
|
| 12 |
+
title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications},
|
| 13 |
+
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
|
| 14 |
+
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
|
| 15 |
+
year={2022}
|
| 16 |
+
}
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
_HOMEPAGE = ""
|
| 20 |
+
|
| 21 |
+
_URLS = {
|
| 22 |
+
"train": "train.json",
|
| 23 |
+
"dev": "dev.json",
|
| 24 |
+
"test": "test.json",
|
| 25 |
+
"challenge": "challenge.json"
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
_DESCRIPTION = """\
|
| 29 |
+
Augmented version of WebNLG v3.0 English with follow-up SPARQL queries with their associated answer(s). A small portion of it also contains natural language questions associated with the queries.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
class WebNLGQA(datasets.GeneratorBasedBuilder):
|
| 33 |
+
"""
|
| 34 |
+
WebNLG-QA: Augmented version of WebNLG v3.0 English with follow-up SPARQL queries with their associated answer(s). A small portion of it also contains natural language questions associated with the queries.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
VERSION = datasets.Version("1.0.0")
|
| 38 |
+
|
| 39 |
+
def _info(self):
|
| 40 |
+
return datasets.DatasetInfo(
|
| 41 |
+
# This is the description that will appear on the datasets page.
|
| 42 |
+
description=_DESCRIPTION,
|
| 43 |
+
# datasets.features.FeatureConnectors
|
| 44 |
+
features=datasets.Features(
|
| 45 |
+
{
|
| 46 |
+
"category": datasets.Value("string"),
|
| 47 |
+
"size": datasets.Value("int32"),
|
| 48 |
+
"id": datasets.Value("string"),
|
| 49 |
+
"eid": datasets.Value("string"),
|
| 50 |
+
"original_triple_sets": [
|
| 51 |
+
{"subject": datasets.Value("string"),
|
| 52 |
+
"property": datasets.Value("string"),
|
| 53 |
+
"object": datasets.Value("string")}
|
| 54 |
+
],
|
| 55 |
+
"modified_triple_sets": [
|
| 56 |
+
{"subject": datasets.Value("string"),
|
| 57 |
+
"property": datasets.Value("string"),
|
| 58 |
+
"object": datasets.Value("string")}
|
| 59 |
+
],
|
| 60 |
+
"shape": datasets.Value("string"),
|
| 61 |
+
"shape_type": datasets.Value("string"),
|
| 62 |
+
"lex": datasets.Sequence(
|
| 63 |
+
{
|
| 64 |
+
"comment": datasets.Value("string"),
|
| 65 |
+
"lid": datasets.Value("string"),
|
| 66 |
+
"text": datasets.Value("string"),
|
| 67 |
+
"lang": datasets.Value("string"),
|
| 68 |
+
}
|
| 69 |
+
),
|
| 70 |
+
"test_category": datasets.Value("string"),
|
| 71 |
+
"dbpedia_links": datasets.Sequence(datasets.Value("string")),
|
| 72 |
+
"links": datasets.Sequence(datasets.Value("string")),
|
| 73 |
+
"graph": [
|
| 74 |
+
[datasets.Value("string")]
|
| 75 |
+
],
|
| 76 |
+
"main_entity": datasets.Value("string"),
|
| 77 |
+
"mappings": [
|
| 78 |
+
{
|
| 79 |
+
"modified": datasets.Value("string"),
|
| 80 |
+
"readable": datasets.Value("string"),
|
| 81 |
+
"graph": datasets.Value("string")
|
| 82 |
+
}
|
| 83 |
+
],
|
| 84 |
+
"dialogue": [
|
| 85 |
+
{
|
| 86 |
+
"question": [ {
|
| 87 |
+
"source": datasets.Value("string"),
|
| 88 |
+
"text": datasets.Value("string")
|
| 89 |
+
}],
|
| 90 |
+
"graph_query": datasets.Value("string"),
|
| 91 |
+
"readable_query": datasets.Value("string"),
|
| 92 |
+
"graph_answer": [
|
| 93 |
+
datasets.Value("string")
|
| 94 |
+
],
|
| 95 |
+
"readable_answer": [
|
| 96 |
+
datasets.Value("string")
|
| 97 |
+
],
|
| 98 |
+
"type": [ datasets.Value("string") ]
|
| 99 |
+
}
|
| 100 |
+
]
|
| 101 |
+
}
|
| 102 |
+
),
|
| 103 |
+
# If there's a common (input, target) tuple from the features,
|
| 104 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 105 |
+
# builder.as_dataset
|
| 106 |
+
supervised_keys=None,
|
| 107 |
+
# Homepage of the dataset for documentation
|
| 108 |
+
homepage=_HOMEPAGE,
|
| 109 |
+
citation=_CITATION,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
def _split_generators(self, dl_manager):
|
| 113 |
+
"""Returns SplitGenerators."""
|
| 114 |
+
# Downloads the data and defines the splits
|
| 115 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 116 |
+
# download and extract URLs
|
| 117 |
+
paths = dl_manager.download_and_extract(_URLS)
|
| 118 |
+
return [
|
| 119 |
+
datasets.SplitGenerator(
|
| 120 |
+
name=datasets.Split.TRAIN,
|
| 121 |
+
gen_kwargs={"filepath": paths['train'],
|
| 122 |
+
"split": "train"}
|
| 123 |
+
),
|
| 124 |
+
datasets.SplitGenerator(
|
| 125 |
+
name=datasets.Split.VALIDATION,
|
| 126 |
+
gen_kwargs={"filepath": paths['dev'],
|
| 127 |
+
"split": "dev"}
|
| 128 |
+
),
|
| 129 |
+
datasets.SplitGenerator(
|
| 130 |
+
name=datasets.Split.TEST,
|
| 131 |
+
gen_kwargs={"filepath": paths['test'],
|
| 132 |
+
"split": "test"}
|
| 133 |
+
),
|
| 134 |
+
datasets.SplitGenerator(
|
| 135 |
+
name="challenge",
|
| 136 |
+
gen_kwargs={"filepath": paths['challenge'],
|
| 137 |
+
"split": "challenge"}
|
| 138 |
+
)
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def _generate_examples(self, filepath, split):
|
| 143 |
+
"""Yields examples."""
|
| 144 |
+
|
| 145 |
+
def transform_sample(original_sample):
|
| 146 |
+
transformed_sample = {
|
| 147 |
+
"category": "",
|
| 148 |
+
"size": -1,
|
| 149 |
+
"id": "",
|
| 150 |
+
"eid": "",
|
| 151 |
+
"original_triple_sets": [],
|
| 152 |
+
"modified_triple_sets": [],
|
| 153 |
+
"shape": "",
|
| 154 |
+
"shape_type": "",
|
| 155 |
+
"lex": [],
|
| 156 |
+
"test_category": "",
|
| 157 |
+
"dbpedia_links": [],
|
| 158 |
+
"links": [],
|
| 159 |
+
"graph": [],
|
| 160 |
+
"main_entity": "",
|
| 161 |
+
"mappings": [],
|
| 162 |
+
"dialogue": []
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
for (old_key, new_key) in [("modifiedtripleset", "modified_triple_sets"), ("originaltriplesets", "original_triple_sets"), ("dbpedialinks", "dbpedia_links"), ("lexicalisations", "lex"), ("xml_id", "eid")]:
|
| 166 |
+
original_sample[new_key] = original_sample[old_key]
|
| 167 |
+
del original_sample[old_key]
|
| 168 |
+
|
| 169 |
+
original_sample["original_triple_sets"] = original_sample["original_triple_sets"]["originaltripleset"][0]
|
| 170 |
+
|
| 171 |
+
for l in original_sample["lex"]:
|
| 172 |
+
l["lid"] = l["xml_id"]
|
| 173 |
+
del l["xml_id"]
|
| 174 |
+
l["text"] = l["lex"]
|
| 175 |
+
del l["lex"]
|
| 176 |
+
|
| 177 |
+
for turn in original_sample["dialogue"]:
|
| 178 |
+
if "question" in turn:
|
| 179 |
+
old_format = turn["question"]
|
| 180 |
+
new_format = []
|
| 181 |
+
for source, text in old_format.items():
|
| 182 |
+
new_format.append({"source": source, "text": text})
|
| 183 |
+
turn["question"] = new_format
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
for k in transformed_sample:
|
| 187 |
+
if k in original_sample:
|
| 188 |
+
transformed_sample[k] = original_sample[k]
|
| 189 |
+
# transformed_sample.update(original_sample)
|
| 190 |
+
|
| 191 |
+
return transformed_sample
|
| 192 |
+
|
| 193 |
+
# Yields (key, example) tuples from the dataset
|
| 194 |
+
with open(filepath,'r') as f:
|
| 195 |
+
data = json.load(f)
|
| 196 |
+
key = 0
|
| 197 |
+
for it in data:
|
| 198 |
+
yield key, transform_sample(it)
|
| 199 |
+
key += 1
|