Daniel O'Connell
commited on
Commit
·
5bbd8e9
1
Parent(s):
c3c2492
add loader script
Browse files- README.md +36 -2
- alignment-research-dataset.py +315 -0
README.md
CHANGED
|
@@ -17,7 +17,7 @@ It is currently maintained and kept up-to-date by volunteers at StampyAI / AI Sa
|
|
| 17 |
|
| 18 |
## Sources
|
| 19 |
|
| 20 |
-
The important thing here is that not all of the dataset entries contain all the same keys.
|
| 21 |
|
| 22 |
They all have the keys: id, source, title, text, and url
|
| 23 |
|
|
@@ -55,6 +55,41 @@ Other keys are available depending on the source document.
|
|
| 55 |
|
| 56 |
2. `alignment_text`: This is label specific to the arXiv papers. We added papers to the dataset using Allen AI's SPECTER model and included all the papers that got a confidence score of over 75%. However, since we could not verify with certainty that those papers where about alignment, we've decided to create the `alignment_text` key with the value `"pos"` when we manually labeled it as an alignment text and `"unlabeled"` when we have not labeled it yet. Additionally, we've only included the `text` for the `"pos"` entries, not the `"unlabeled"` entries.
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
## Contributing
|
| 59 |
|
| 60 |
Join us at [StampyAI](https://coda.io/d/AI-Safety-Info_dfau7sl2hmG/Get-involved_susRF#_lufSr).
|
|
@@ -64,4 +99,3 @@ Join us at [StampyAI](https://coda.io/d/AI-Safety-Info_dfau7sl2hmG/Get-involved_
|
|
| 64 |
Please use the following citation when using our dataset:
|
| 65 |
|
| 66 |
Kirchner, J. H., Smith, L., Thibodeau, J., McDonnell, K., and Reynolds, L. "Understanding AI alignment research: A Systematic Analysis." arXiv preprint arXiv:2022.4338861 (2022).
|
| 67 |
-
|
|
|
|
| 17 |
|
| 18 |
## Sources
|
| 19 |
|
| 20 |
+
The important thing here is that not all of the dataset entries contain all the same keys.
|
| 21 |
|
| 22 |
They all have the keys: id, source, title, text, and url
|
| 23 |
|
|
|
|
| 55 |
|
| 56 |
2. `alignment_text`: This is label specific to the arXiv papers. We added papers to the dataset using Allen AI's SPECTER model and included all the papers that got a confidence score of over 75%. However, since we could not verify with certainty that those papers where about alignment, we've decided to create the `alignment_text` key with the value `"pos"` when we manually labeled it as an alignment text and `"unlabeled"` when we have not labeled it yet. Additionally, we've only included the `text` for the `"pos"` entries, not the `"unlabeled"` entries.
|
| 57 |
|
| 58 |
+
## Usage
|
| 59 |
+
|
| 60 |
+
Execute the following code to download and parse the files:
|
| 61 |
+
```
|
| 62 |
+
from datasets import load_dataset
|
| 63 |
+
data = load_dataset('StampyAI/alignment-research-dataset')
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
To only get the data for a specific source, pass it in as the second argument, e.g.:
|
| 67 |
+
|
| 68 |
+
```
|
| 69 |
+
from datasets import load_dataset
|
| 70 |
+
data = load_dataset('StampyAI/alignment-research-dataset', 'lesswrong')
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
The various sources have different keys - the resulting data object will have all keys that make sense, with `None** as the value of keys that aren't in a given source. For example, assuming there are the following sources with the appropriate features:
|
| 74 |
+
|
| 75 |
+
##### source1
|
| 76 |
+
+ id
|
| 77 |
+
+ name
|
| 78 |
+
+ description
|
| 79 |
+
+ author
|
| 80 |
+
|
| 81 |
+
##### source2
|
| 82 |
+
+ id
|
| 83 |
+
+ name
|
| 84 |
+
+ url
|
| 85 |
+
+ text
|
| 86 |
+
|
| 87 |
+
Then the resulting data object with have 6 columns, i.e. `id`, `name`, `description`, `author`, `url` and `text`, where rows from `source1` will have `None` in the `url` and `text` columns, and the `source2` rows will have `None` in their `description` and `author` columns.
|
| 88 |
+
|
| 89 |
+
## Limitations and bias
|
| 90 |
+
|
| 91 |
+
LessWrong posts have overweighted content on x-risk doom so beware of training or finetuning generative LLMs on the dataset.
|
| 92 |
+
|
| 93 |
## Contributing
|
| 94 |
|
| 95 |
Join us at [StampyAI](https://coda.io/d/AI-Safety-Info_dfau7sl2hmG/Get-involved_susRF#_lufSr).
|
|
|
|
| 99 |
Please use the following citation when using our dataset:
|
| 100 |
|
| 101 |
Kirchner, J. H., Smith, L., Thibodeau, J., McDonnell, K., and Reynolds, L. "Understanding AI alignment research: A Systematic Analysis." arXiv preprint arXiv:2022.4338861 (2022).
|
|
|
alignment-research-dataset.py
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
from datasets import Value, Sequence
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
_CITATION = '''
|
| 9 |
+
@article{kirchner2022understanding,
|
| 10 |
+
title={Understanding AI Alignment Research: A Systematic Analysis},
|
| 11 |
+
author={Kirchner, Joshua H and Smith, Lauren and Thibodeau, Joseph and McDonnell, Kathleen and Reynolds, Lauren},
|
| 12 |
+
journal={arXiv preprint arXiv:2022.4338861},
|
| 13 |
+
year={2022}
|
| 14 |
+
}
|
| 15 |
+
'''
|
| 16 |
+
|
| 17 |
+
_DESCRIPTION = """A dataset of AI alignment research, collected from various sources."""
|
| 18 |
+
|
| 19 |
+
_HOMEPAGE = "https://github.com/StampyAI/alignment-research-dataset"
|
| 20 |
+
|
| 21 |
+
_LICENSE = ""
|
| 22 |
+
|
| 23 |
+
_VERSION_ = '0.0.0'
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def iterate_file(filename):
|
| 27 |
+
with open(filename) as f:
|
| 28 |
+
for l in f:
|
| 29 |
+
try:
|
| 30 |
+
yield json.loads(l)
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f'Could not parse: {l}')
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
## Feature extractor helpers
|
| 36 |
+
def get_type(value):
|
| 37 |
+
"""Recursively get the huggingface type for the provided value."""
|
| 38 |
+
if value is None:
|
| 39 |
+
return None
|
| 40 |
+
if value and isinstance(value, (tuple, list)):
|
| 41 |
+
return features.Sequence(
|
| 42 |
+
get_type(value[0])
|
| 43 |
+
)
|
| 44 |
+
if value and isinstance(value, dict):
|
| 45 |
+
return {k: get_type(v) for k, v in value.items()}
|
| 46 |
+
if isinstance(value, str):
|
| 47 |
+
return Value('string')
|
| 48 |
+
if isinstance(value, int):
|
| 49 |
+
return Value('int32')
|
| 50 |
+
if isinstance(value, float):
|
| 51 |
+
return Value('double')
|
| 52 |
+
if isinstance(value, bool):
|
| 53 |
+
return Value('bool')
|
| 54 |
+
return None
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def print_extra_features(files):
|
| 58 |
+
"""Go through all the provided files, and get the non default features for the given file.
|
| 59 |
+
|
| 60 |
+
This can be done manually but would be a hassle.
|
| 61 |
+
It's assumed that the files contain a json object on each line.
|
| 62 |
+
"""
|
| 63 |
+
ignored_keys = [
|
| 64 |
+
'comments', # Comments are arbitrarily nested objects, which doesn't play nice with huggingface
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
per_file = {}
|
| 68 |
+
for filename in sorted(files):
|
| 69 |
+
extra_types = {}
|
| 70 |
+
for item in iterate_file(filename):
|
| 71 |
+
for k, v in item.items():
|
| 72 |
+
if (k not in extra_types or not extra_types[k]) and k not in ignored_keys and k not in DEFAULT_FEATURES:
|
| 73 |
+
extra_types[k] = get_type(v)
|
| 74 |
+
per_file[filename] = extra_types
|
| 75 |
+
|
| 76 |
+
print('DATASOURCES = {')
|
| 77 |
+
for k, features in per_file.items():
|
| 78 |
+
vals = ',\n'.join(f" '{k}': {v}" for k, v in features.items())
|
| 79 |
+
print(f" '{k.stem}': #\n{vals}\n $,".replace('#', '{').replace('$', '}'))
|
| 80 |
+
print('}')
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# These keys are present in all files
|
| 84 |
+
DEFAULT_FEATURES = {
|
| 85 |
+
'id': Value('string'),
|
| 86 |
+
'source': Value('string'),
|
| 87 |
+
'title': Value('string'),
|
| 88 |
+
'text': Value('large_string'),
|
| 89 |
+
'url': Value('string'),
|
| 90 |
+
'date_published': Value(dtype='string'),
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
# Per datasource additional features
|
| 94 |
+
DATASOURCES = {
|
| 95 |
+
'agentmodels': {
|
| 96 |
+
'source_filetype': Value(dtype='string', id=None),
|
| 97 |
+
'converted_with': Value(dtype='string', id=None),
|
| 98 |
+
'book_title': Value(dtype='string', id=None),
|
| 99 |
+
'authors': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)
|
| 100 |
+
},
|
| 101 |
+
'aiimpacts.org': {
|
| 102 |
+
'paged_url': Value(dtype='string', id=None)
|
| 103 |
+
},
|
| 104 |
+
'aipulse.org': {
|
| 105 |
+
'paged_url': Value(dtype='string', id=None)
|
| 106 |
+
},
|
| 107 |
+
'aisafety.camp': {
|
| 108 |
+
'paged_url': Value(dtype='string', id=None)
|
| 109 |
+
},
|
| 110 |
+
'alignment_newsletter': {
|
| 111 |
+
'converted_with': Value(dtype='string', id=None),
|
| 112 |
+
'source_type': Value(dtype='string', id=None),
|
| 113 |
+
'venue': Value(dtype='string', id=None),
|
| 114 |
+
'newsletter_category': Value(dtype='string', id=None),
|
| 115 |
+
'highlight': Value(dtype='int32', id=None),
|
| 116 |
+
'newsletter_number': Value(dtype='string', id=None),
|
| 117 |
+
'summarizer': Value(dtype='string', id=None),
|
| 118 |
+
'opinion': Value(dtype='string', id=None),
|
| 119 |
+
'prerequisites': Value(dtype='string', id=None),
|
| 120 |
+
'read_more': Value(dtype='string', id=None),
|
| 121 |
+
'authors': Value(dtype='string', id=None)
|
| 122 |
+
},
|
| 123 |
+
'arbital': {
|
| 124 |
+
'source_filetype': Value(dtype='string', id=None),
|
| 125 |
+
'authors': Value(dtype='string', id=None),
|
| 126 |
+
'alias': Value(dtype='string', id=None)
|
| 127 |
+
},
|
| 128 |
+
'arxiv_papers': {
|
| 129 |
+
'authors': Value(dtype='string', id=None),
|
| 130 |
+
'source_type': Value(dtype='string', id=None),
|
| 131 |
+
'converted_with': Value(dtype='string', id=None),
|
| 132 |
+
'data_last_modified': Value(dtype='string', id=None),
|
| 133 |
+
'abstract': Value(dtype='string', id=None),
|
| 134 |
+
'author_comment': Value(dtype='string', id=None),
|
| 135 |
+
'journal_ref': Value(dtype='string', id=None),
|
| 136 |
+
'doi': Value(dtype='string', id=None),
|
| 137 |
+
'primary_category': Value(dtype='string', id=None),
|
| 138 |
+
'categories': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)
|
| 139 |
+
},
|
| 140 |
+
'audio_transcripts': {
|
| 141 |
+
'source_filetype': Value(dtype='string', id=None),
|
| 142 |
+
'converted_with': Value(dtype='string', id=None),
|
| 143 |
+
'authors': Value(dtype='string', id=None)
|
| 144 |
+
},
|
| 145 |
+
'carado.moe': {
|
| 146 |
+
'source_type': Value(dtype='string', id=None),
|
| 147 |
+
'authors': Value(dtype='string', id=None)
|
| 148 |
+
},
|
| 149 |
+
'cold.takes': {},
|
| 150 |
+
'deepmind.blog': {
|
| 151 |
+
'source_type': Value(dtype='string', id=None)
|
| 152 |
+
},
|
| 153 |
+
'distill': {
|
| 154 |
+
'source_type': Value(dtype='string', id=None),
|
| 155 |
+
'converted_with': Value(dtype='string', id=None),
|
| 156 |
+
'authors': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
| 157 |
+
'abstract': Value(dtype='string', id=None),
|
| 158 |
+
'journal_ref': Value(dtype='string', id=None),
|
| 159 |
+
'doi': Value(dtype='string', id=None),
|
| 160 |
+
'bibliography_bib': Sequence(feature={'title': Value(dtype='string', id=None)}, length=-1, id=None)
|
| 161 |
+
},
|
| 162 |
+
'eaforum': {
|
| 163 |
+
'authors': Value(dtype='string', id=None),
|
| 164 |
+
'score': Value(dtype='string', id=None),
|
| 165 |
+
'omega_karma': Value(dtype='string', id=None),
|
| 166 |
+
'votes': Value(dtype='string', id=None),
|
| 167 |
+
'tags': Value(dtype='string', id=None)
|
| 168 |
+
},
|
| 169 |
+
'gdocs': {
|
| 170 |
+
'source_filetype': Value(dtype='string', id=None),
|
| 171 |
+
'converted_with': Value(dtype='string', id=None),
|
| 172 |
+
'authors': Value(dtype='string', id=None),
|
| 173 |
+
'docx_name': Value(dtype='string', id=None)
|
| 174 |
+
},
|
| 175 |
+
'gdrive_ebooks': {
|
| 176 |
+
'source_filetype': Value(dtype='string', id=None),
|
| 177 |
+
'converted_with': Value(dtype='string', id=None),
|
| 178 |
+
'chapter_names': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
| 179 |
+
'file_name': Value(dtype='string', id=None)
|
| 180 |
+
},
|
| 181 |
+
'generative.ink': {},
|
| 182 |
+
'gwern_blog': {
|
| 183 |
+
'authors': Value(dtype='string', id=None)
|
| 184 |
+
},
|
| 185 |
+
'intelligence.org': {
|
| 186 |
+
'paged_url': Value(dtype='string', id=None)
|
| 187 |
+
},
|
| 188 |
+
'jsteinhardt.wordpress.com': {
|
| 189 |
+
'paged_url': Value(dtype='string', id=None)
|
| 190 |
+
},
|
| 191 |
+
'lesswrong': {
|
| 192 |
+
'authors': Value(dtype='string', id=None),
|
| 193 |
+
'score': Value(dtype='string', id=None),
|
| 194 |
+
'omega_karma': Value(dtype='string', id=None),
|
| 195 |
+
'votes': Value(dtype='string', id=None),
|
| 196 |
+
'tags': Value(dtype='string', id=None)
|
| 197 |
+
},
|
| 198 |
+
'markdown.ebooks': {
|
| 199 |
+
'source_type': Value(dtype='string', id=None),
|
| 200 |
+
'authors': Value(dtype='string', id=None),
|
| 201 |
+
'filename': Value(dtype='string', id=None)
|
| 202 |
+
},
|
| 203 |
+
'nonarxiv_papers': {
|
| 204 |
+
'source_filetype': Value(dtype='string', id=None),
|
| 205 |
+
'abstract': Value(dtype='string', id=None),
|
| 206 |
+
'authors': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
| 207 |
+
'filename': Value(dtype='string', id=None)
|
| 208 |
+
},
|
| 209 |
+
'qualiacomputing.com': {
|
| 210 |
+
'paged_url': Value(dtype='string', id=None)
|
| 211 |
+
},
|
| 212 |
+
'reports': {
|
| 213 |
+
'source_filetype': Value(dtype='string', id=None),
|
| 214 |
+
'abstract': Value(dtype='string', id=None),
|
| 215 |
+
'authors': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
| 216 |
+
'filename': Value(dtype='string', id=None)
|
| 217 |
+
},
|
| 218 |
+
'stampy': {
|
| 219 |
+
'source_filetype': Value(dtype='string', id=None),
|
| 220 |
+
'authors': Value(dtype='string', id=None),
|
| 221 |
+
'question': Value(dtype='string', id=None),
|
| 222 |
+
'answer': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
| 223 |
+
'entry': Value(dtype='string', id=None)
|
| 224 |
+
},
|
| 225 |
+
'vkrakovna.wordpress.com': {
|
| 226 |
+
'paged_url': Value(dtype='string', id=None)
|
| 227 |
+
},
|
| 228 |
+
'waitbutwhy': {
|
| 229 |
+
'source_type': Value(dtype='string', id=None),
|
| 230 |
+
'authors': Value(dtype='string', id=None)
|
| 231 |
+
},
|
| 232 |
+
'www.yudkowsky.net': {
|
| 233 |
+
'paged_url': Value(dtype='string', id=None)
|
| 234 |
+
},
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def join_features(features, to_join):
|
| 239 |
+
"""Recursively join the provided dicts.
|
| 240 |
+
|
| 241 |
+
`to_join` can either be a dict to be merged, or a list of dicts to merge.
|
| 242 |
+
"""
|
| 243 |
+
if not to_join:
|
| 244 |
+
return datasets.Features(features)
|
| 245 |
+
if isinstance(to_join, dict):
|
| 246 |
+
return datasets.Features(dict(features, **to_join))
|
| 247 |
+
return join_features(dict(features, **to_join[0]), to_join[1:])
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class AlignmentResearchDatasetConfig(datasets.BuilderConfig):
|
| 251 |
+
"""BuilderConfig for AlignmentResaerchDataset."""
|
| 252 |
+
|
| 253 |
+
def __init__(self, sources, features, **kwargs):
|
| 254 |
+
"""BuilderConfig for AlignmentResaerchDataset.
|
| 255 |
+
|
| 256 |
+
:param List[string] sources: the sources which will be used by this config
|
| 257 |
+
"""
|
| 258 |
+
super().__init__(version=datasets.Version(_VERSION_), **kwargs)
|
| 259 |
+
self.sources = sources
|
| 260 |
+
self.features = join_features(DEFAULT_FEATURES, features)
|
| 261 |
+
|
| 262 |
+
@property
|
| 263 |
+
def files(self):
|
| 264 |
+
return [f'{source}.jsonl' for source in self.sources]
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
class AlignmentResaerchDataset(datasets.GeneratorBasedBuilder):
|
| 268 |
+
VERSION = datasets.Version(_VERSION_)
|
| 269 |
+
|
| 270 |
+
BUILDER_CONFIGS = [
|
| 271 |
+
AlignmentResearchDatasetConfig(
|
| 272 |
+
name='all',
|
| 273 |
+
description='All data files',
|
| 274 |
+
sources=list(DATASOURCES.keys()),
|
| 275 |
+
features=list(DATASOURCES.values())
|
| 276 |
+
)
|
| 277 |
+
] + [
|
| 278 |
+
AlignmentResearchDatasetConfig(name=source, sources=[source], features=features) for source, features in DATASOURCES.items()
|
| 279 |
+
]
|
| 280 |
+
DEFAULT_CONFIG_NAME = 'all'
|
| 281 |
+
|
| 282 |
+
def _info(self):
|
| 283 |
+
return datasets.DatasetInfo(
|
| 284 |
+
description=_DESCRIPTION,
|
| 285 |
+
features=self.config.features,
|
| 286 |
+
homepage=_HOMEPAGE,
|
| 287 |
+
license=_LICENSE,
|
| 288 |
+
citation=_CITATION,
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
def _split_generators(self, dl_manager):
|
| 292 |
+
return [
|
| 293 |
+
datasets.SplitGenerator(
|
| 294 |
+
name=datasets.Split.TRAIN,
|
| 295 |
+
gen_kwargs={'files': dl_manager.download(self.config.files)}
|
| 296 |
+
)
|
| 297 |
+
]
|
| 298 |
+
|
| 299 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 300 |
+
def _generate_examples(self, files):
|
| 301 |
+
seen = set()
|
| 302 |
+
|
| 303 |
+
def is_good(item):
|
| 304 |
+
item_id = item and item.get('id')
|
| 305 |
+
if not item_id or item_id in seen:
|
| 306 |
+
return False
|
| 307 |
+
seen.add(item_id)
|
| 308 |
+
|
| 309 |
+
return item['text'] not in [None, '', 'n/a']
|
| 310 |
+
|
| 311 |
+
def prepare_example(item):
|
| 312 |
+
return item['id'], {k: item.get(k) for k in self.config.features}
|
| 313 |
+
|
| 314 |
+
lines = (item for filename in files for item in iterate_file(filename))
|
| 315 |
+
return map(prepare_example, filter(is_good, lines))
|