Datasets:
feat: add load script
Browse files
silicone-masks-biometric-attacks.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from xml.etree import ElementTree as ET
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
|
| 5 |
+
_CITATION = """\
|
| 6 |
+
@InProceedings{huggingface:dataset,
|
| 7 |
+
title = {silicone-masks-biometric-attacks},
|
| 8 |
+
author = {TrainingDataPro},
|
| 9 |
+
year = {2023}
|
| 10 |
+
}
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
_DESCRIPTION = """\
|
| 14 |
+
The dataset consists of videos of individuals and attacks with printed 2D masks and
|
| 15 |
+
silicone masks . Videos are filmed in different lightning conditions (*in a dark room,
|
| 16 |
+
daylight, light room and nightlight*). Dataset includes videos of people with different
|
| 17 |
+
attributes (*glasses, mask, hat, hood, wigs and mustaches for men*).
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
_NAME = "silicone-masks-biometric-attacks"
|
| 21 |
+
|
| 22 |
+
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
| 23 |
+
|
| 24 |
+
_LICENSE = ""
|
| 25 |
+
|
| 26 |
+
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
| 27 |
+
|
| 28 |
+
_LABELS = ["real", "silicone", "mask"]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class SiliconeMasksBiometricAttacks(datasets.GeneratorBasedBuilder):
|
| 32 |
+
def _info(self):
|
| 33 |
+
return datasets.DatasetInfo(
|
| 34 |
+
description=_DESCRIPTION,
|
| 35 |
+
features=datasets.Features(
|
| 36 |
+
{
|
| 37 |
+
"id": datasets.Value("int32"),
|
| 38 |
+
"name": datasets.Value("string"),
|
| 39 |
+
"video": datasets.Value("string"),
|
| 40 |
+
"label": datasets.ClassLabel(
|
| 41 |
+
num_classes=len(_LABELS),
|
| 42 |
+
names=_LABELS,
|
| 43 |
+
),
|
| 44 |
+
}
|
| 45 |
+
),
|
| 46 |
+
supervised_keys=None,
|
| 47 |
+
homepage=_HOMEPAGE,
|
| 48 |
+
citation=_CITATION,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
def _split_generators(self, dl_manager):
|
| 52 |
+
videos = dl_manager.download(f"{_DATA}videos.tar.gz")
|
| 53 |
+
videos = dl_manager.iter_archive(videos)
|
| 54 |
+
return [
|
| 55 |
+
datasets.SplitGenerator(
|
| 56 |
+
name=datasets.Split.TRAIN,
|
| 57 |
+
gen_kwargs={
|
| 58 |
+
"videos": videos,
|
| 59 |
+
},
|
| 60 |
+
),
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
def _generate_examples(self, videos):
|
| 64 |
+
for idx, ((video_path, video)) in enumerate(videos):
|
| 65 |
+
for lbl in _LABELS:
|
| 66 |
+
if lbl in video_path:
|
| 67 |
+
label = lbl
|
| 68 |
+
|
| 69 |
+
yield idx, {
|
| 70 |
+
"id": idx,
|
| 71 |
+
"name": video_path.split("/")[-1],
|
| 72 |
+
"video": video_path,
|
| 73 |
+
"label": label,
|
| 74 |
+
}
|