File size: 8,828 Bytes
5a64de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
pretty_name: OrgStrategy Reasoning 1k (v2)
license: cc-by-4.0
language:
- en
task_categories:
- text-generation
tags:
- business
- strategy
- consulting
- operations
- chain-of-thought
- reasoning
- frameworks
- management
size_categories:
- 1K<n<10K
---

# OrgStrategy Reasoning 1k (v2)

## What This Dataset Is About

This dataset contains **1,000 real-world business strategy scenarios** with structured reasoning chains that teach AI models to apply proven strategic frameworks to complex organizational problems.

### Core Purpose
- **Train models to think strategically** using established business frameworks
- **Provide structured reasoning patterns** for complex problem-solving
- **Bridge the gap** between generic AI responses and domain-specific strategic analysis
- **Enable AI assistants** to provide consultant-quality strategic advice

### Why This Dataset Matters

**The Problem:** Most AI models give generic business advice without applying proven strategic frameworks. They lack the structured thinking that consultants use to solve complex organizational challenges.

**The Solution:** This dataset teaches models to:
1. **Identify the right framework** for each problem type
2. **Apply structured analysis** (problem decomposition, root cause analysis, strategic options)
3. **Generate actionable plans** with owners, timelines, and budgets
4. **Think like a consultant** using proven methodologies

## Dataset Structure

### Columns
- **`prompt`**: Business problem with context (sector, metrics, budget, timeline)
- **`reasoning`**: Structured analysis using the specified framework
- **`solution`**: Actionable implementation plan
- **`framework`**: Strategic framework applied (e.g., "Disruptive Innovation", "Blue Ocean")
- **`scenario_type`**: Problem category (finance, people, process, etc.)

### Framework Distribution
The dataset covers 9 major strategic frameworks:

1. **Competitive Advantage** (124 cases) - Cost leadership vs differentiation strategies
2. **7 Powers** (121 cases) - Scale economies, network effects, switching costs
3. **Lean** (116 cases) - Waste elimination, value stream optimization
4. **Blue Ocean** (115 cases) - Creating uncontested market space
5. **Playing To Win** (110 cases) - 5 strategic choices framework
6. **Five Forces** (108 cases) - Porter's industry structure analysis
7. **Good Strategy** (108 cases) - Diagnosis, guiding policy, coherent actions
8. **Disruptive Innovation** (106 cases) - Christensen's disruption theory
9. **Systems Thinking** (92 cases) - Holistic problem-solving approach

### Scenario Types
- **Finance** (181) - Revenue, costs, profitability challenges
- **People** (176) - HR, talent, organizational development
- **Supply** (175) - Supply chain, procurement, logistics
- **Process** (174) - Operations, workflows, efficiency
- **Customer** (151) - Customer experience, satisfaction
- **Technology** (143) - Digital transformation, IT challenges

## Example Entry

### Prompt
```
Healthcare sector: orders processed worsened from 120units/day to 80units/day because of Cycle time increased due to long queues and poor coordination across departments. Budget: $0.41M. Timeline: 5 months. Apply Disruptive Innovation.
```

### Framework Applied
**Disruptive Innovation** - Focuses on simpler, cheaper solutions that start in overlooked segments and move upmarket

### Reasoning Structure
```xml
<strategic_analysis>
**Framework:** Disruptive Innovation

Disruptive innovation describes how simpler, more affordable solutions initially target overlooked segments and then move upmarket, eventually displacing established products.

**Problem Decomposition:** Cycle time increased due to long queues and poor coordination across departments.

**Organizational Impact:**
- Marketing team: 7 FTEs
- Operations team: 12 FTEs  
- IT team: 5 FTEs

**Root Cause Analysis:**
1. Manual approval processes creating bottlenecks
2. Lack of cross-department coordination
3. Outdated workflow systems

**Strategic Options:**
1. Implement automated workflow system (Disruptive approach)
2. Redesign approval processes (Sustaining approach)
3. Cross-train staff for flexibility (Hybrid approach)
</strategic_analysis>

<action_plan>
1. Deploy automated workflow platform (Owner: IT Director; Timeline: 8 weeks; Budget: $0.15M)
2. Implement cross-department coordination protocols (Owner: Operations Manager; Timeline: 4 weeks; Budget: $0.05M)
3. Train staff on new systems (Owner: HR Director; Timeline: 6 weeks; Budget: $0.08M)
</action_plan>
```

## How Strategic Frameworks Are Applied

Each framework provides a **structured lens** for analysis:

- **Disruptive Innovation**: Simpler, cheaper solutions starting in overlooked segments
- **Blue Ocean**: Eliminate competition by creating new market space
- **Five Forces**: Analyze industry structure (suppliers, buyers, substitutes, new entrants, rivalry)
- **7 Powers**: Identify structural advantages (scale, network effects, switching costs)
- **Lean**: Eliminate waste and optimize value streams
- **Systems Thinking**: View problems holistically across interconnected parts
- **Competitive Advantage**: Choose between cost leadership and differentiation
- **Playing To Win**: Make 5 strategic choices (aspiration, where to play, how to win, capabilities, systems)
- **Good Strategy**: Diagnose, create guiding policy, design coherent actions

## Intended Uses

### Primary Applications
- **Train strategic reasoning models** for business consulting
- **Fine-tune LLMs** for structured problem-solving
- **Develop AI consultants** that apply proven frameworks
- **Create strategic planning assistants** for organizations

### Research Applications
- **Study framework application patterns** across different problem types
- **Analyze reasoning chain effectiveness** in strategic decision-making
- **Develop evaluation metrics** for strategic reasoning quality
- **Compare framework performance** across scenarios

## Usage Examples

### Basic Loading
```python
from datasets import load_dataset

# Load the dataset
ds = load_dataset("Wildstash/OrgStrategy-Reasoning-1k-v2", split="train")
print(f"Dataset size: {len(ds)}")
print(f"Columns: {ds.column_names}")
```

### Filter by Framework
```python
# Get all Disruptive Innovation cases
disruptive_cases = ds.filter(lambda x: x['framework'] == 'Disruptive Innovation')
print(f"Disruptive Innovation cases: {len(disruptive_cases)}")

# Get all Blue Ocean Strategy cases
blue_ocean_cases = ds.filter(lambda x: x['framework'] == 'Blue Ocean')
print(f"Blue Ocean cases: {len(blue_ocean_cases)}")
```

### Filter by Scenario Type
```python
# Get finance-related scenarios
finance_cases = ds.filter(lambda x: x['scenario_type'] == 'finance')
print(f"Finance scenarios: {len(finance_cases)}")

# Get process optimization cases
process_cases = ds.filter(lambda x: x['scenario_type'] == 'process')
print(f"Process scenarios: {len(process_cases)}")
```

### Training Example
```python
# Example training loop for strategic reasoning
for example in ds:
    prompt = example['prompt']
    reasoning = example['reasoning'] 
    solution = example['solution']
    framework = example['framework']
    
    # Use this for fine-tuning your model
    training_example = {
        "instruction": f"Apply {framework} framework to solve this business problem: {prompt}",
        "response": f"{reasoning}\n\n{solution}"
    }
```

### Evaluation Example
```python
# Evaluate model's framework application
def evaluate_framework_usage(model_output, expected_framework):
    return expected_framework.lower() in model_output.lower()

# Test on a sample
sample = ds[0]
model_response = your_model.generate(sample['prompt'])
framework_correct = evaluate_framework_usage(model_response, sample['framework'])
```

## Dataset Quality

### Validation
- **Framework consistency**: Each entry applies the specified framework correctly
- **Reasoning structure**: Structured analysis follows consistent patterns
- **Actionability**: Solutions include owners, timelines, and budgets
- **Diversity**: Covers multiple sectors, problem types, and frameworks

### Limitations
- **English only**: All content is in English
- **Business focus**: Primarily corporate/organizational scenarios
- **Framework scope**: Limited to 9 major strategic frameworks
- **Synthetic elements**: Some scenarios may be constructed for training purposes

## Citation

If you use this dataset, please cite:

```bibtex
@dataset{wildstash_orgstrategy_2025,
  title={OrgStrategy Reasoning 1k (v2): Business Strategy Scenarios with Structured Reasoning},
  author={Wildstash},
  year={2025},
  url={https://huggingface.co/datasets/Wildstash/OrgStrategy-Reasoning-1k-v2},
  license={CC-BY-4.0}
}
```

## License
CC-BY-4.0 - You are free to use, modify, and distribute this dataset for any purpose.