File size: 6,068 Bytes
1a326b0 d5f198b 41f5f59 d5f198b 71a2277 d5f198b 71a2277 d5f198b 71a2277 d5f198b 71a2277 1edf13b 0fd7941 1edf13b 0fd7941 1edf13b 0fd7941 1edf13b 0fd7941 1edf13b 0fd7941 1edf13b 1a326b0 d5f198b 1edf13b 1a326b0 cc9534a 1a326b0 5128e9b 64c3937 5128e9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
---
dataset_info:
- config_name: conversational
features:
- name: id
dtype: string
- name: prompt
list:
- name: role
dtype: string
- name: content
dtype: string
- name: completion
list:
- name: role
dtype: string
- name: content
dtype: string
- name: Label
dtype: string
splits:
- name: train
num_bytes: 29687479
num_examples: 8143
- name: dev
num_bytes: 3253954
num_examples: 907
- name: test
num_bytes: 15518665
num_examples: 3427
download_size: 19010599
dataset_size: 48460098
- config_name: processed
features:
- name: id
dtype: string
- name: status
dtype: string
- name: why_stop
dtype: string
- name: Phase
dtype: string
- name: Diseases
dtype: string
- name: ICD_Codes
dtype: string
- name: Drugs
dtype: string
- name: SMILES
dtype: string
- name: CT_Criteria
dtype: string
- name: Label
dtype: string
splits:
- name: train
num_bytes: 24311848
num_examples: 8143
- name: dev
num_bytes: 2644392
num_examples: 907
- name: test
num_bytes: 13752994
num_examples: 3427
download_size: 17699289
dataset_size: 40709234
- config_name: source
features:
- name: nctid
dtype: string
- name: status
dtype: string
- name: why_stop
dtype: string
- name: label
dtype: int64
- name: phase
dtype: string
- name: diseases
dtype: string
- name: icdcodes
dtype: string
- name: drugs
dtype: string
- name: smiless
dtype: string
- name: criteria
dtype: string
splits:
- name: train
num_bytes: 24287418
num_examples: 8143
- name: dev
num_bytes: 2641671
num_examples: 907
- name: test
num_bytes: 13742713
num_examples: 3427
download_size: 17691541
dataset_size: 40671802
configs:
- config_name: conversational
data_files:
- split: train
path: conversational/train-*
- split: dev
path: conversational/dev-*
- split: test
path: conversational/test-*
- config_name: processed
data_files:
- split: train
path: processed/train-*
- split: dev
path: processed/dev-*
- split: test
path: processed/test-*
- config_name: source
data_files:
- split: train
path: source/train-*
- split: dev
path: source/dev-*
- split: test
path: source/test-*
license: cc-by-sa-4.0
task_categories:
- question-answering
- text-classification
language:
- en
tags:
- medical
pretty_name: HINT
size_categories:
- 10K<n<100K
---
# HINT: Hierarchical interaction network for clinical-trial-outcome predictions
## Dataset Description
| | Links |
|:-------------------------------:|:-------------:|
| **Homepage:** | [Github.io](https://paperswithcode.com/paper/hint-hierarchical-interaction-network-for) |
| **Repository:** | [Github](https://github.com/futianfan/clinical-trial-outcome-prediction) |
| **Paper:** | [arXiv](https://arxiv.org/abs/2102.04252) |
| **Contact (Original Authors):** | Tianfan Fu ([email protected]) |
| **Contact (Curator):** | [Artur Guimarães](https://araag2.netlify.app/) ([email protected]) |
### Dataset Summary
`Clinical trials are crucial for drug development but are time consuming, expensive, and often burdensome on patients. More importantly, clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment. If we were better at predicting the results of clinical trials, we could avoid having to run trials that will inevitably fail more resources could be devoted to trials that are likely to succeed. In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions for all diseases based on a comprehensive and diverse set of web data including molecule information of the drugs, target disease information, trial protocol and biomedical knowledge. HINT first encode these multi-modal data into latent embeddings, where an imputation module is designed to handle missing data. Next, these embeddings will be fed into the knowledge embedding module to generate knowledge embeddings that are pretrained using external knowledge on pharmaco-kinetic properties and trial risk from the web. Then the interaction graph module will connect all the embedding via domain knowledge to fully capture various trial components and their complex relations as well as their influences on trial outcomes. Finally, HINT learns a dynamic attentive graph neural network to predict trial outcome. Comprehensive experimental results show that HINT achieves strong predictive performance, obtaining 0.772, 0.607, 0.623, 0.703 on PR-AUC for Phase I, II, III, and indication outcome prediction, respectively. It also consistently outperforms the best baseline method by up to 12.4\% on PR-AUC.`
### Data Instances
```
{
'TO:DO': ...,
...
}
```
### Data Fields
TO:DO
## Additional Information
### Dataset Curators
#### Original Paper
- Tianfan Fu - Georgia Institute of Technology
- Kexin Huang - Harvard University
- Cao Xiao - Analytics Center of Excellence, IQVIA
- Lucas M. - Temple University
- Jimeng Sun - University of Illinois at Urbana-Champaign
#### Huggingface Curator
- [Artur Guimarães](https://araag2.netlify.app/) ([email protected]) - INESC-ID / University of Lisbon - Instituto Superior Técnico
### Licensing Information
[CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/deed.en)
### Citation Information
```
@article{fu2021hint,
title={HINT: Hierarchical Interaction Network for Trial Outcome Prediction Leveraging Web Data},
author={Fu, Tianfan and Huang, Kexin and Xiao, Cao and Glass, Lucas M and Sun, Jimeng},
journal={arXiv preprint arXiv:2102.04252},
year={2021}
}
```
[10.1016/j.patter.2022.100445](https://doi.org/10.1016/j.patter.2022.100445)
### Contributions
Thanks to [araag2](https://github.com/araag2) for adding this dataset. |