File size: 6,068 Bytes
1a326b0
 
d5f198b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41f5f59
d5f198b
 
71a2277
d5f198b
 
71a2277
d5f198b
 
71a2277
d5f198b
71a2277
 
1edf13b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd7941
 
1edf13b
 
0fd7941
1edf13b
 
0fd7941
1edf13b
 
0fd7941
1edf13b
0fd7941
 
1edf13b
1a326b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f198b
 
 
 
 
 
 
 
1edf13b
 
 
 
 
 
 
 
1a326b0
 
 
 
 
 
 
 
cc9534a
 
 
 
 
 
 
 
 
 
 
1a326b0
5128e9b
 
 
 
 
64c3937
 
 
 
 
 
 
5128e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
dataset_info:
- config_name: conversational
  features:
  - name: id
    dtype: string
  - name: prompt
    list:
    - name: role
      dtype: string
    - name: content
      dtype: string
  - name: completion
    list:
    - name: role
      dtype: string
    - name: content
      dtype: string
  - name: Label
    dtype: string
  splits:
  - name: train
    num_bytes: 29687479
    num_examples: 8143
  - name: dev
    num_bytes: 3253954
    num_examples: 907
  - name: test
    num_bytes: 15518665
    num_examples: 3427
  download_size: 19010599
  dataset_size: 48460098
- config_name: processed
  features:
  - name: id
    dtype: string
  - name: status
    dtype: string
  - name: why_stop
    dtype: string
  - name: Phase
    dtype: string
  - name: Diseases
    dtype: string
  - name: ICD_Codes
    dtype: string
  - name: Drugs
    dtype: string
  - name: SMILES
    dtype: string
  - name: CT_Criteria
    dtype: string
  - name: Label
    dtype: string
  splits:
  - name: train
    num_bytes: 24311848
    num_examples: 8143
  - name: dev
    num_bytes: 2644392
    num_examples: 907
  - name: test
    num_bytes: 13752994
    num_examples: 3427
  download_size: 17699289
  dataset_size: 40709234
- config_name: source
  features:
  - name: nctid
    dtype: string
  - name: status
    dtype: string
  - name: why_stop
    dtype: string
  - name: label
    dtype: int64
  - name: phase
    dtype: string
  - name: diseases
    dtype: string
  - name: icdcodes
    dtype: string
  - name: drugs
    dtype: string
  - name: smiless
    dtype: string
  - name: criteria
    dtype: string
  splits:
  - name: train
    num_bytes: 24287418
    num_examples: 8143
  - name: dev
    num_bytes: 2641671
    num_examples: 907
  - name: test
    num_bytes: 13742713
    num_examples: 3427
  download_size: 17691541
  dataset_size: 40671802
configs:
- config_name: conversational
  data_files:
  - split: train
    path: conversational/train-*
  - split: dev
    path: conversational/dev-*
  - split: test
    path: conversational/test-*
- config_name: processed
  data_files:
  - split: train
    path: processed/train-*
  - split: dev
    path: processed/dev-*
  - split: test
    path: processed/test-*
- config_name: source
  data_files:
  - split: train
    path: source/train-*
  - split: dev
    path: source/dev-*
  - split: test
    path: source/test-*
license: cc-by-sa-4.0
task_categories:
- question-answering
- text-classification
language:
- en
tags:
- medical
pretty_name: HINT
size_categories:
- 10K<n<100K
---

# HINT: Hierarchical interaction network for clinical-trial-outcome predictions

## Dataset Description

|                                 | Links         | 
|:-------------------------------:|:-------------:|
| **Homepage:**                   |  [Github.io](https://paperswithcode.com/paper/hint-hierarchical-interaction-network-for)  | 
| **Repository:**                 |  [Github](https://github.com/futianfan/clinical-trial-outcome-prediction)  | 
| **Paper:**                      |  [arXiv](https://arxiv.org/abs/2102.04252)  | 
| **Contact (Original Authors):** |   Tianfan Fu ([email protected]) |
| **Contact (Curator):**          |  [Artur Guimarães](https://araag2.netlify.app/) ([email protected]) |
  
### Dataset Summary

`Clinical trials are crucial for drug development but are time consuming, expensive, and often burdensome on patients. More importantly, clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment. If we were better at predicting the results of clinical trials, we could avoid having to run trials that will inevitably fail more resources could be devoted to trials that are likely to succeed. In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions for all diseases based on a comprehensive and diverse set of web data including molecule information of the drugs, target disease information, trial protocol and biomedical knowledge. HINT first encode these multi-modal data into latent embeddings, where an imputation module is designed to handle missing data. Next, these embeddings will be fed into the knowledge embedding module to generate knowledge embeddings that are pretrained using external knowledge on pharmaco-kinetic properties and trial risk from the web. Then the interaction graph module will connect all the embedding via domain knowledge to fully capture various trial components and their complex relations as well as their influences on trial outcomes. Finally, HINT learns a dynamic attentive graph neural network to predict trial outcome. Comprehensive experimental results show that HINT achieves strong predictive performance, obtaining 0.772, 0.607, 0.623, 0.703 on PR-AUC for Phase I, II, III, and indication outcome prediction, respectively. It also consistently outperforms the best baseline method by up to 12.4\% on PR-AUC.`

### Data Instances

```
{
  'TO:DO': ...,
  ...
}
```

### Data Fields

TO:DO

## Additional Information

### Dataset Curators

#### Original Paper

- Tianfan Fu - Georgia Institute of Technology
- Kexin Huang - Harvard University
- Cao Xiao - Analytics Center of Excellence, IQVIA
- Lucas M. - Temple University
- Jimeng Sun - University of Illinois at Urbana-Champaign

#### Huggingface Curator

- [Artur Guimarães](https://araag2.netlify.app/) ([email protected]) - INESC-ID / University of Lisbon - Instituto Superior Técnico

### Licensing Information

[CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/deed.en)

### Citation Information

```
@article{fu2021hint,
  title={HINT: Hierarchical Interaction Network for Trial Outcome Prediction Leveraging Web Data},
  author={Fu, Tianfan and Huang, Kexin and Xiao, Cao and Glass, Lucas M and Sun, Jimeng},
  journal={arXiv preprint arXiv:2102.04252},
  year={2021}
}
```

[10.1016/j.patter.2022.100445](https://doi.org/10.1016/j.patter.2022.100445)

### Contributions

Thanks to [araag2](https://github.com/araag2) for adding this dataset.