codeShare commited on
Commit
1a3d180
Β·
verified Β·
1 Parent(s): d802028

Upload 2 files

Browse files
YT-playlist-to-mp3.ipynb CHANGED
@@ -1 +1 @@
1
- {"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1761124521078},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1760628088876},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1756712618300},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1747490904984},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1740037333374},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1736477078136},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1725365086834}]},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["This Notebook will take a Youtube Playlist and convert all videos to MP3:s , which will be stored on a folder on your Google Drive.\n","\n","⚠️Note: YT did some obfuscation mumbo jumbo yesterday so downloads will run slower than usual until the yt-dlp guys fix it\n","\n","https://github.com/yt-dlp/yt-dlp/issues/14680"],"metadata":{"id":"I64oSgGJxki5"}},{"cell_type":"code","execution_count":1,"metadata":{"id":"KXsmL_npl5Zf","executionInfo":{"status":"ok","timestamp":1761124747205,"user_tz":-120,"elapsed":8,"user":{"displayName":"No Name","userId":"10578412414437288386"}}},"outputs":[],"source":["#Initialize\n","import os\n","def my_mkdirs(folder):\n"," if os.path.exists(folder)==False:\n"," os.makedirs(folder)\n","my_mkdirs('/content/tmp/')"]},{"cell_type":"code","source":["#NOTE: you need to download cookies from youtube to your drive folder because of recent Youtubr BS restrictions\n","#Reinstall youtube_dl because the version on Colab is outdated\n","!python3 -m pip install --force-reinstall https://github.com/yt-dlp/yt-dlp/archive/master.tar.gz\n","import yt_dlp as youtube_dl\n"],"metadata":{"id":"CT8O2CJYl-Cb"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["#Mount Google Drive\n","from google.colab import drive\n","drive.mount('/content/drive')"],"metadata":{"id":"vxae5FCml-0A","executionInfo":{"status":"ok","timestamp":1761124777790,"user_tz":-120,"elapsed":16817,"user":{"displayName":"No Name","userId":"10578412414437288386"}},"outputId":"cf4a687e-32a9-4ae6-82e2-83f9aa808882","colab":{"base_uri":"https://localhost:8080/"}},"execution_count":3,"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n"]}]},{"cell_type":"code","source":["# @markdown download video or playlist as audio file mp3\n","youtube_link = '' # @param {type:'string'}\n","playlist_start = 1\n","## @param {type:'number'}\n","playlist_end = 9999\n","## @param {type:'number'}\n","\n","#Extract all videos in YT playlist mp3 files\n","#Aborting this code is fine if list is latge ( You will keep downloaded mp3:s)\n","%cd /content/drive/MyDrive/Saved from Chrome/\n","for playlist_URL in youtube_link.split(','):\n"," !yt-dlp --extractor-args \"youtube:player_js_version=actual\" --cookies /content/drive/MyDrive/ytcookies.txt --playlist-end {playlist_end} --playlist-start {playlist_start} --extract-audio --audio-format mp3 -o \"%(title)s.%(ext)s\" {playlist_URL}"],"metadata":{"id":"0K9n3HM6l-7x"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["\n","# @markdown Download video or playlist as highest video quality mp4\n","youtube_link = '' # @param {type:'string'}\n","playlist_start = 1\n","## @param {type:'number'}\n","playlist_end = 9999\n","## @param {type:'number'}\n","\n","#Extract all videos in YT playlist mp3 files\n","#Aborting this code is fine if list is latge ( You will keep downloaded mp3:s)\n","%cd /content/drive/MyDrive/Saved from Chrome/\n","for playlist_URL in youtube_link.split(','):\n"," !yt-dlp --extractor-args \"youtube:player_js_version=actual\" --cookies /content/drive/MyDrive/ytcookies.txt --playlist-end {playlist_end} --playlist-start {playlist_start} --merge-output-format mp4 -f \"bestvideo+bestaudio[ext=m4a]/best\" -o \"%(title)s.%(ext)s\" {playlist_URL}"],"metadata":{"id":"EWZ4sO7NfdA6"},"execution_count":null,"outputs":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wTbO9mWbDXNr"},"outputs":[],"source":["\n","# @markdown 🌊 Rapid keyframe processing\n","# @markdown <br> ------ <br> Extract Keyframes from ALL mp4 / webm videos found on Google Drive\n","# @markdown <br> Be mindful of Google Drive Terms of Service\n","# @markdown <br> This cell will process all mp4 videos found under\n","# @markdown <br> /content/drive/MyDrive/Saved from Chrome/\n","delete_mp4_when_done = True # @param {type:'boolean'}\n","# @markdown <br> deleted mp4/webm files will be found under 'trash' in your Google drive\n","# @markdown <br> -------\n","# @markdown <br> (Optional) Add a direct video link to below field.\n","# @markdown <br> Multiple links can be written in this field\n","# @markdown <br> separated by comma. Like this: <br> ' https:\\\\\\my_video.mp4 , https:\\\\\\second_video.webm , .... '\n","import os\n","import shutil\n","!pip install video-kf\n","!pip install ffmpeg-python\n","!pip install wget\n","!pip install moviepy\n","import wget\n","import videokf as vf\n","import time\n","proc_keyframes=True # @param {type:'boolean'}\n","proc_audio=False # @param {type:'boolean'}\n","#def mkdirs(folder):\n","# if not os.path.exists(folder):os.makedirs(folder)\n","#----#\n","direct_link = '' # @param {type:'string'}\n","# @markdown The linked videos will be downloaded to the Google drive prior to running the script.\n","# @markdown <br> This feature is useful for direct processing .webm from 4chan threads into keyframes\n","use_link = False # @param {type:'boolean'}\n","if direct_link.find('http')>-1: use_link = True\n","if use_link:\n"," %cd '/content/drive/MyDrive/Saved from Chrome/'\n"," for link in direct_link.split(','):\n"," if not link.find('http')>-1:continue\n"," wget.download(link.strip())\n"," time.sleep(5)\n"," %cd '/content/'\n","#-----#\n","filenames = []\n","srcpath = '/content/drive/MyDrive/Saved from Chrome/'\n","destpath = '/content/drive/MyDrive/'\n","localpath = '/content/'\n","converted = ''\n","for filename in os.listdir(f'{srcpath}'):\n"," if filename.find('.zip')>-1:\n"," %cd {srcpath}\n"," !unzip {filename}\n"," os.remove(filename)\n"," filename = filename.replace('.zip','')\n"," for suffix in ['.mp4','.webm']:\n"," if filename.find(f'{suffix}')>-1: filenames.append(filename)\n","#Rename the downloaded video to 'tgt0' before running this cell\n","def my_mkdirs(folder):\n"," if os.path.exists(folder):shutil.rmtree(folder)\n"," os.makedirs(folder)\n","#----#\n","# @markdown Write a funny name for the folder(s) containing the keyframes\n","name_keyframes_as='' # @param {type:'string'}\n","# @markdown Created .zip files will not be overwritten\n","#NUM_ITEMS = 1 # @param {type:'slider', min:1 , max:20,step:1}\n","if name_keyframes_as.strip()=='': name_keyframes_as='keyframes'\n","num = 0\n","savepath = ''\n","%cd {localpath}\n","for filename in filenames:\n"," tgt_folder = f'/content/tmp'\n"," my_mkdirs(f'{tgt_folder}')\n"," print(f'Now processing video {filename}...')\n"," if proc_keyframes:\n"," vf.extract_keyframes(f'{srcpath}{filename}',output_dir_keyframes=f'{tgt_folder}')\n"," savepath = f'{destpath}{name_keyframes_as}_v{num}_kf'\n"," #---#\n"," while os.path.exists(f'{savepath}.zip'):\n"," #print(f'{savepath}.zip already exists...')\n"," num = num+1\n"," savepath = f'{destpath}{name_keyframes_as}_v{num}_kf'\n"," #---#\n"," shutil.make_archive(savepath,'zip' , f'{tgt_folder}')\n"," #from moviepy.editor import VideoFileClip\n"," if proc_audio:\n"," from moviepy.editor import VideoFileClip\n"," # Load the WebM file\n"," video = VideoFileClip(f\"{srcpath}{filename}\")\n","\n"," # Extract audio and save as MP3 (or WAV, etc.)\n"," audio = video.audio\n"," savepath = f\"{destpath}_audio_v{num}.mp3\"\n","\n"," while os.path.exists(savepath):\n"," num = num+1\n"," savepath= f\"{destpath}_audio_v{num}.mp3\"\n"," #----#\n"," if audio:\n"," audio.write_audiofile(f'{savepath}')\n"," # Close the files to free resources\n"," audio.close()\n"," video.close()\n"," #----#\n"," if delete_mp4_when_done: os.remove(f'{srcpath}{filename}')\n"," num = num+1\n"]},{"cell_type":"code","source":["import os\n","import zipfile\n","import glob\n","from google.colab import drive\n","import shutil\n","from pathlib import Path\n","\n","# Mount Google Drive\n","drive.mount('/content/drive')\n","\n","# Define the directory containing the zip files\n","zip_dir = '/content/drive/MyDrive/'\n","zip_pattern = 'keyframes_v*_kf.zip'\n","output_zip = '/content/drive/MyDrive/all_keyframes_combined.zip'\n","\n","# Temporary extraction directory\n","temp_dir = '/content/temp_extracted'\n","os.makedirs(temp_dir, exist_ok=True)\n","\n","# Function to check if file is an image\n","def is_image_file(filename):\n"," image_extensions = {\n"," '.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.tif',\n"," '.webp', '.ico', '.svg', '.heic', '.heif', '.raw', '.cr2',\n"," '.nef', '.arw', '.dng', '.jpe', '.jp2', '.j2k'\n"," }\n"," ext = Path(filename).suffix.lower()\n"," return ext in image_extensions\n","\n","# Store original zip files for cleanup\n","original_zip_files = []\n","\n","print(\"Finding zip files...\")\n","zip_files = glob.glob(os.path.join(zip_dir, zip_pattern))\n","original_zip_files = zip_files.copy() # Keep for cleanup\n","print(f\"Found {len(zip_files)} zip files: {[os.path.basename(z) for z in zip_files]}\")\n","\n","# Extract each zip file\n","image_txt_pairs = []\n","for zip_path in zip_files:\n"," print(f\"\\nπŸ”“ Extracting: {os.path.basename(zip_path)}\")\n","\n"," with zipfile.ZipFile(zip_path, 'r') as zip_ref:\n"," # Extract to temporary directory with unique subfolder\n"," unique_subdir = os.path.join(temp_dir, Path(zip_path).stem)\n"," zip_ref.extractall(unique_subdir)\n","\n"," # Find all files in the extracted content\n"," for root, dirs, files in os.walk(unique_subdir):\n"," for file in files:\n"," file_path = os.path.join(root, file)\n"," base_name = Path(file).stem\n"," ext = Path(file).suffix.lower()\n","\n"," if is_image_file(file):\n"," # Look for corresponding txt file\n"," txt_path = None\n"," possible_txt_names = [\n"," f\"{base_name}.txt\",\n"," f\"{base_name.lower()}.txt\",\n"," f\"{base_name.upper()}.txt\"\n"," ]\n","\n"," for txt_name in possible_txt_names:\n"," potential_txt = os.path.join(root, txt_name)\n"," if os.path.exists(potential_txt):\n"," txt_path = potential_txt\n"," break\n","\n"," image_txt_pairs.append({\n"," 'image_path': file_path,\n"," 'txt_path': txt_path,\n"," 'base_name': base_name\n"," })\n","\n","print(f\"\\nπŸ“Š Total image-txt pairs found: {len(image_txt_pairs)}\")\n","print(f\" Images with matching txt: {sum(1 for p in image_txt_pairs if p['txt_path'])}\")\n","print(f\" Images without txt: {sum(1 for p in image_txt_pairs if not p['txt_path'])}\")\n","\n","# Create the output zip file\n","print(\"\\nπŸ—œοΈ Creating combined zip file...\")\n","combined_zip_created = False\n","\n","try:\n"," with zipfile.ZipFile(output_zip, 'w', zipfile.ZIP_DEFLATED) as output_zip_file:\n"," for i, pair in enumerate(image_txt_pairs, 1):\n"," try:\n"," # Create new image filename (keep original extension)\n"," original_ext = Path(pair['image_path']).suffix.lower()\n"," new_image_name = f\"{i}{original_ext}\"\n","\n"," # Add image\n"," with open(pair['image_path'], 'rb') as img_file:\n"," img_data = img_file.read()\n"," output_zip_file.writestr(new_image_name, img_data)\n","\n"," # Add corresponding txt file if exists\n"," if pair['txt_path'] and os.path.exists(pair['txt_path']):\n"," new_txt_name = f\"{i}.txt\"\n"," with open(pair['txt_path'], 'rb') as txt_file:\n"," txt_data = txt_file.read()\n"," output_zip_file.writestr(new_txt_name, txt_data)\n","\n"," if i % 50 == 0:\n"," print(f\"Processed {i}/{len(image_txt_pairs)} items...\")\n","\n"," except Exception as e:\n"," print(f\"❌ Error processing item {i}: {e}\")\n"," continue\n","\n"," # Verify the output zip was created successfully\n"," if os.path.exists(output_zip) and os.path.getsize(output_zip) > 0:\n"," combined_zip_created = True\n"," print(\"βœ… Combined zip file created successfully!\")\n"," else:\n"," print(\"❌ Failed to create combined zip file!\")\n"," combined_zip_created = False\n","\n","except Exception as e:\n"," print(f\"❌ Error creating combined zip: {e}\")\n"," combined_zip_created = False\n","\n","# Clean up temporary directory\n","try:\n"," shutil.rmtree(temp_dir, ignore_errors=True)\n"," print(\"🧹 Temporary extraction files cleaned up\")\n","except:\n"," print(\"⚠️ Could not clean up temporary extraction files\")\n","\n","# Remove original zip files ONLY if combined zip was created successfully\n","if combined_zip_created and original_zip_files:\n"," print(f\"\\nπŸ—‘οΈ Removing {len(original_zip_files)} original zip files...\")\n"," removed_count = 0\n","\n"," for zip_path in original_zip_files:\n"," try:\n"," if os.path.exists(zip_path):\n"," os.remove(zip_path)\n"," print(f\" πŸ—‘οΈ Removed: {os.path.basename(zip_path)}\")\n"," removed_count += 1\n"," else:\n"," print(f\" ⚠️ File not found: {os.path.basename(zip_path)}\")\n"," except Exception as e:\n"," print(f\" ❌ Failed to remove {os.path.basename(zip_path)}: {e}\")\n","\n"," print(f\"βœ… Successfully removed {removed_count}/{len(original_zip_files)} original zip files\")\n","else:\n"," print(\"\\n⚠️ Skipping removal of original files - combined zip creation failed!\")\n"," print(\" Original files preserved for safety.\")\n","\n","# Final verification\n","if os.path.exists(output_zip):\n"," with zipfile.ZipFile(output_zip, 'r') as z:\n"," file_list = z.namelist()\n"," print(f\"\\nπŸ” Final verification:\")\n"," print(f\" πŸ“ Combined zip: {output_zip}\")\n"," print(f\" πŸ“Š Total files: {len(file_list)}\")\n","\n"," images_count = len([f for f in file_list if is_image_file(f)])\n"," txts_count = len([f for f in file_list if f.endswith('.txt')])\n"," print(f\" πŸ–ΌοΈ Images: {images_count}\")\n"," print(f\" πŸ“„ Text files: {txts_count}\")\n","\n"," # Check for matching pairs\n"," image_numbers = set()\n"," txt_numbers = set()\n"," for f in file_list:\n"," if is_image_file(f):\n"," try:\n"," num = int(Path(f).stem)\n"," image_numbers.add(num)\n"," except:\n"," pass\n"," elif f.endswith('.txt'):\n"," try:\n"," num = int(Path(f).stem)\n"," txt_numbers.add(num)\n"," except:\n"," pass\n","\n"," matched_pairs = len(image_numbers & txt_numbers)\n"," print(f\" πŸ”— Matched image-txt pairs: {matched_pairs}\")\n"," print(f\" πŸ’Ύ Size: {os.path.getsize(output_zip) / (1024*1024):.1f} MB\")\n","\n","print(f\"\\nπŸŽ‰ Process completed!\")\n","print(f\"πŸ“ Final output: {output_zip}\")\n","if combined_zip_created:\n"," print(\"βœ… All original zip files have been removed.\")\n","else:\n"," print(\"⚠️ Original files preserved due to error.\")"],"metadata":{"id":"uZXUfKefmCIv"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["\n","drive_folder_name = 'yt_music' # @param {type:'string'}\n","\n","%cd /content/\n","!zip -r /content/drive/MyDrive/{drive_folder_name}.zip /content/tmp"],"metadata":{"id":"D04FssOTma-2"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from google.colab import runtime\n","#runtime.unassign()\n","\n","\n"],"metadata":{"id":"1JlaBNIKODCT"},"execution_count":null,"outputs":[]}]}
 
1
+ {"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1762004412712},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1761124521078},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1760628088876},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1756712618300},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1747490904984},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1740037333374},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1736477078136},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1725365086834}]},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["This Notebook will take a Youtube Playlist and convert all videos to MP3:s , which will be stored on a folder on your Google Drive.\n","\n","⚠️Note: YT did some obfuscation mumbo jumbo yesterday so downloads will run slower than usual until the yt-dlp guys fix it\n","\n","https://github.com/yt-dlp/yt-dlp/issues/14680"],"metadata":{"id":"I64oSgGJxki5"}},{"cell_type":"code","execution_count":1,"metadata":{"id":"KXsmL_npl5Zf","executionInfo":{"status":"ok","timestamp":1762004349456,"user_tz":-60,"elapsed":9,"user":{"displayName":"","userId":""}}},"outputs":[],"source":["#Initialize\n","import os\n","def my_mkdirs(folder):\n"," if os.path.exists(folder)==False:\n"," os.makedirs(folder)\n","my_mkdirs('/content/tmp/')"]},{"cell_type":"code","source":["#NOTE: you need to download cookies from youtube to your drive folder because of recent Youtubr BS restrictions\n","#Reinstall youtube_dl because the version on Colab is outdated\n","!python3 -m pip install --force-reinstall https://github.com/yt-dlp/yt-dlp/archive/master.tar.gz\n","import yt_dlp as youtube_dl\n"],"metadata":{"id":"CT8O2CJYl-Cb"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["#Mount Google Drive\n","from google.colab import drive\n","drive.mount('/content/drive')"],"metadata":{"id":"vxae5FCml-0A","executionInfo":{"status":"ok","timestamp":1762004364476,"user_tz":-60,"elapsed":15017,"user":{"displayName":"","userId":""}},"outputId":"7da0a205-7a25-413d-fa6c-0271a0f1f4b3","colab":{"base_uri":"https://localhost:8080/"}},"execution_count":2,"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n"]}]},{"cell_type":"code","source":["# @markdown download video or playlist as audio file mp3\n","youtube_link = '' # @param {type:'string'}\n","playlist_start = 1\n","## @param {type:'number'}\n","playlist_end = 9999\n","## @param {type:'number'}\n","\n","#Extract all videos in YT playlist mp3 files\n","#Aborting this code is fine if list is latge ( You will keep downloaded mp3:s)\n","%cd /content/drive/MyDrive/Saved from Chrome/\n","for playlist_URL in youtube_link.split(','):\n"," !yt-dlp --extractor-args \"youtube:player_js_version=actual\" --cookies /content/drive/MyDrive/ytcookies.txt --playlist-end {playlist_end} --playlist-start {playlist_start} --extract-audio --audio-format mp3 -o \"%(title)s.%(ext)s\" {playlist_URL}"],"metadata":{"id":"0K9n3HM6l-7x"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["\n","# @markdown Download video or playlist as highest video quality mp4\n","youtube_link = '' # @param {type:'string'}\n","playlist_start = 1\n","## @param {type:'number'}\n","playlist_end = 9999\n","## @param {type:'number'}\n","\n","#Extract all videos in YT playlist mp3 files\n","#Aborting this code is fine if list is latge ( You will keep downloaded mp3:s)\n","%cd /content/drive/MyDrive/Saved from Chrome/\n","for playlist_URL in youtube_link.split(','):\n"," !yt-dlp --extractor-args \"youtube:player_js_version=actual\" --cookies /content/drive/MyDrive/ytcookies.txt --playlist-end {playlist_end} --playlist-start {playlist_start} --merge-output-format mp4 -f \"bestvideo+bestaudio[ext=m4a]/best\" -o \"%(title)s.%(ext)s\" {playlist_URL}"],"metadata":{"id":"EWZ4sO7NfdA6"},"execution_count":null,"outputs":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wTbO9mWbDXNr"},"outputs":[],"source":["\n","# @markdown 🌊 Rapid keyframe processing\n","# @markdown <br> ------ <br> Extract Keyframes from ALL mp4 / webm videos found on Google Drive\n","# @markdown <br> Be mindful of Google Drive Terms of Service\n","# @markdown <br> This cell will process all mp4 videos found under\n","# @markdown <br> /content/drive/MyDrive/Saved from Chrome/\n","delete_mp4_when_done = True # @param {type:'boolean'}\n","# @markdown <br> deleted mp4/webm files will be found under 'trash' in your Google drive\n","# @markdown <br> -------\n","# @markdown <br> (Optional) Add a direct video link to below field.\n","# @markdown <br> Multiple links can be written in this field\n","# @markdown <br> separated by comma. Like this: <br> ' https:\\\\\\my_video.mp4 , https:\\\\\\second_video.webm , .... '\n","import os\n","import shutil\n","!pip install video-kf\n","!pip install ffmpeg-python\n","!pip install wget\n","!pip install moviepy\n","import wget\n","import videokf as vf\n","import time\n","proc_keyframes=True # @param {type:'boolean'}\n","proc_audio=False # @param {type:'boolean'}\n","#def mkdirs(folder):\n","# if not os.path.exists(folder):os.makedirs(folder)\n","#----#\n","direct_link = '' # @param {type:'string'}\n","# @markdown The linked videos will be downloaded to the Google drive prior to running the script.\n","# @markdown <br> This feature is useful for direct processing .webm from 4chan threads into keyframes\n","use_link = False # @param {type:'boolean'}\n","if direct_link.find('http')>-1: use_link = True\n","if use_link:\n"," %cd '/content/drive/MyDrive/Saved from Chrome/'\n"," for link in direct_link.split(','):\n"," if not link.find('http')>-1:continue\n"," wget.download(link.strip())\n"," time.sleep(5)\n"," %cd '/content/'\n","#-----#\n","filenames = []\n","srcpath = '/content/drive/MyDrive/Saved from Chrome/'\n","destpath = '/content/drive/MyDrive/'\n","localpath = '/content/'\n","converted = ''\n","for filename in os.listdir(f'{srcpath}'):\n"," if filename.find('.zip')>-1:\n"," %cd {srcpath}\n"," !unzip {filename}\n"," os.remove(filename)\n"," filename = filename.replace('.zip','')\n"," for suffix in ['.mkv','.mp4','.webm']:\n"," if filename.find(f'{suffix}')>-1: filenames.append(filename)\n","#Rename the downloaded video to 'tgt0' before running this cell\n","def my_mkdirs(folder):\n"," if os.path.exists(folder):shutil.rmtree(folder)\n"," os.makedirs(folder)\n","#----#\n","# @markdown Write a funny name for the folder(s) containing the keyframes\n","name_keyframes_as='' # @param {type:'string'}\n","# @markdown Created .zip files will not be overwritten\n","#NUM_ITEMS = 1 # @param {type:'slider', min:1 , max:20,step:1}\n","if name_keyframes_as.strip()=='': name_keyframes_as='keyframes'\n","num = 0\n","savepath = ''\n","%cd {localpath}\n","for filename in filenames:\n"," tgt_folder = f'/content/tmp'\n"," my_mkdirs(f'{tgt_folder}')\n"," print(f'Now processing video {filename}...')\n"," if proc_keyframes:\n"," vf.extract_keyframes(f'{srcpath}{filename}',output_dir_keyframes=f'{tgt_folder}')\n"," savepath = f'{destpath}{name_keyframes_as}_v{num}_kf'\n"," #---#\n"," while os.path.exists(f'{savepath}.zip'):\n"," #print(f'{savepath}.zip already exists...')\n"," num = num+1\n"," savepath = f'{destpath}{name_keyframes_as}_v{num}_kf'\n"," #---#\n"," shutil.make_archive(savepath,'zip' , f'{tgt_folder}')\n"," #from moviepy.editor import VideoFileClip\n"," if proc_audio:\n"," from moviepy.editor import VideoFileClip\n"," # Load the WebM file\n"," video = VideoFileClip(f\"{srcpath}{filename}\")\n","\n"," # Extract audio and save as MP3 (or WAV, etc.)\n"," audio = video.audio\n"," savepath = f\"{destpath}_audio_v{num}.mp3\"\n","\n"," while os.path.exists(savepath):\n"," num = num+1\n"," savepath= f\"{destpath}_audio_v{num}.mp3\"\n"," #----#\n"," if audio:\n"," audio.write_audiofile(f'{savepath}')\n"," # Close the files to free resources\n"," audio.close()\n"," video.close()\n"," #----#\n"," if delete_mp4_when_done: os.remove(f'{srcpath}{filename}')\n"," num = num+1\n"]},{"cell_type":"code","source":["import os\n","import zipfile\n","import glob\n","from google.colab import drive\n","import shutil\n","from pathlib import Path\n","\n","# Mount Google Drive\n","drive.mount('/content/drive')\n","\n","# Define the directory containing the zip files\n","zip_dir = '/content/drive/MyDrive/'\n","zip_pattern = 'keyframes_v*_kf.zip'\n","output_zip = '/content/drive/MyDrive/all_keyframes_combined.zip'\n","\n","# Temporary extraction directory\n","temp_dir = '/content/temp_extracted'\n","os.makedirs(temp_dir, exist_ok=True)\n","\n","# Function to check if file is an image\n","def is_image_file(filename):\n"," image_extensions = {\n"," '.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.tif',\n"," '.webp', '.ico', '.svg', '.heic', '.heif', '.raw', '.cr2',\n"," '.nef', '.arw', '.dng', '.jpe', '.jp2', '.j2k'\n"," }\n"," ext = Path(filename).suffix.lower()\n"," return ext in image_extensions\n","\n","# Store original zip files for cleanup\n","original_zip_files = []\n","\n","print(\"Finding zip files...\")\n","zip_files = glob.glob(os.path.join(zip_dir, zip_pattern))\n","original_zip_files = zip_files.copy() # Keep for cleanup\n","print(f\"Found {len(zip_files)} zip files: {[os.path.basename(z) for z in zip_files]}\")\n","\n","# Extract each zip file\n","image_txt_pairs = []\n","for zip_path in zip_files:\n"," print(f\"\\nπŸ”“ Extracting: {os.path.basename(zip_path)}\")\n","\n"," with zipfile.ZipFile(zip_path, 'r') as zip_ref:\n"," # Extract to temporary directory with unique subfolder\n"," unique_subdir = os.path.join(temp_dir, Path(zip_path).stem)\n"," zip_ref.extractall(unique_subdir)\n","\n"," # Find all files in the extracted content\n"," for root, dirs, files in os.walk(unique_subdir):\n"," for file in files:\n"," file_path = os.path.join(root, file)\n"," base_name = Path(file).stem\n"," ext = Path(file).suffix.lower()\n","\n"," if is_image_file(file):\n"," # Look for corresponding txt file\n"," txt_path = None\n"," possible_txt_names = [\n"," f\"{base_name}.txt\",\n"," f\"{base_name.lower()}.txt\",\n"," f\"{base_name.upper()}.txt\"\n"," ]\n","\n"," for txt_name in possible_txt_names:\n"," potential_txt = os.path.join(root, txt_name)\n"," if os.path.exists(potential_txt):\n"," txt_path = potential_txt\n"," break\n","\n"," image_txt_pairs.append({\n"," 'image_path': file_path,\n"," 'txt_path': txt_path,\n"," 'base_name': base_name\n"," })\n","\n","print(f\"\\nπŸ“Š Total image-txt pairs found: {len(image_txt_pairs)}\")\n","print(f\" Images with matching txt: {sum(1 for p in image_txt_pairs if p['txt_path'])}\")\n","print(f\" Images without txt: {sum(1 for p in image_txt_pairs if not p['txt_path'])}\")\n","\n","# Create the output zip file\n","print(\"\\nπŸ—œοΈ Creating combined zip file...\")\n","combined_zip_created = False\n","\n","try:\n"," with zipfile.ZipFile(output_zip, 'w', zipfile.ZIP_DEFLATED) as output_zip_file:\n"," for i, pair in enumerate(image_txt_pairs, 1):\n"," try:\n"," # Create new image filename (keep original extension)\n"," original_ext = Path(pair['image_path']).suffix.lower()\n"," new_image_name = f\"{i}{original_ext}\"\n","\n"," # Add image\n"," with open(pair['image_path'], 'rb') as img_file:\n"," img_data = img_file.read()\n"," output_zip_file.writestr(new_image_name, img_data)\n","\n"," # Add corresponding txt file if exists\n"," if pair['txt_path'] and os.path.exists(pair['txt_path']):\n"," new_txt_name = f\"{i}.txt\"\n"," with open(pair['txt_path'], 'rb') as txt_file:\n"," txt_data = txt_file.read()\n"," output_zip_file.writestr(new_txt_name, txt_data)\n","\n"," if i % 50 == 0:\n"," print(f\"Processed {i}/{len(image_txt_pairs)} items...\")\n","\n"," except Exception as e:\n"," print(f\"❌ Error processing item {i}: {e}\")\n"," continue\n","\n"," # Verify the output zip was created successfully\n"," if os.path.exists(output_zip) and os.path.getsize(output_zip) > 0:\n"," combined_zip_created = True\n"," print(\"βœ… Combined zip file created successfully!\")\n"," else:\n"," print(\"❌ Failed to create combined zip file!\")\n"," combined_zip_created = False\n","\n","except Exception as e:\n"," print(f\"❌ Error creating combined zip: {e}\")\n"," combined_zip_created = False\n","\n","# Clean up temporary directory\n","try:\n"," shutil.rmtree(temp_dir, ignore_errors=True)\n"," print(\"🧹 Temporary extraction files cleaned up\")\n","except:\n"," print(\"⚠️ Could not clean up temporary extraction files\")\n","\n","# Remove original zip files ONLY if combined zip was created successfully\n","if combined_zip_created and original_zip_files:\n"," print(f\"\\nπŸ—‘οΈ Removing {len(original_zip_files)} original zip files...\")\n"," removed_count = 0\n","\n"," for zip_path in original_zip_files:\n"," try:\n"," if os.path.exists(zip_path):\n"," os.remove(zip_path)\n"," print(f\" πŸ—‘οΈ Removed: {os.path.basename(zip_path)}\")\n"," removed_count += 1\n"," else:\n"," print(f\" ⚠️ File not found: {os.path.basename(zip_path)}\")\n"," except Exception as e:\n"," print(f\" ❌ Failed to remove {os.path.basename(zip_path)}: {e}\")\n","\n"," print(f\"βœ… Successfully removed {removed_count}/{len(original_zip_files)} original zip files\")\n","else:\n"," print(\"\\n⚠️ Skipping removal of original files - combined zip creation failed!\")\n"," print(\" Original files preserved for safety.\")\n","\n","# Final verification\n","if os.path.exists(output_zip):\n"," with zipfile.ZipFile(output_zip, 'r') as z:\n"," file_list = z.namelist()\n"," print(f\"\\nπŸ” Final verification:\")\n"," print(f\" πŸ“ Combined zip: {output_zip}\")\n"," print(f\" πŸ“Š Total files: {len(file_list)}\")\n","\n"," images_count = len([f for f in file_list if is_image_file(f)])\n"," txts_count = len([f for f in file_list if f.endswith('.txt')])\n"," print(f\" πŸ–ΌοΈ Images: {images_count}\")\n"," print(f\" πŸ“„ Text files: {txts_count}\")\n","\n"," # Check for matching pairs\n"," image_numbers = set()\n"," txt_numbers = set()\n"," for f in file_list:\n"," if is_image_file(f):\n"," try:\n"," num = int(Path(f).stem)\n"," image_numbers.add(num)\n"," except:\n"," pass\n"," elif f.endswith('.txt'):\n"," try:\n"," num = int(Path(f).stem)\n"," txt_numbers.add(num)\n"," except:\n"," pass\n","\n"," matched_pairs = len(image_numbers & txt_numbers)\n"," print(f\" πŸ”— Matched image-txt pairs: {matched_pairs}\")\n"," print(f\" πŸ’Ύ Size: {os.path.getsize(output_zip) / (1024*1024):.1f} MB\")\n","\n","print(f\"\\nπŸŽ‰ Process completed!\")\n","print(f\"πŸ“ Final output: {output_zip}\")\n","if combined_zip_created:\n"," print(\"βœ… All original zip files have been removed.\")\n","else:\n"," print(\"⚠️ Original files preserved due to error.\")"],"metadata":{"id":"uZXUfKefmCIv"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["\n","drive_folder_name = 'yt_music' # @param {type:'string'}\n","\n","%cd /content/\n","!zip -r /content/drive/MyDrive/{drive_folder_name}.zip /content/tmp"],"metadata":{"id":"D04FssOTma-2"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["from google.colab import runtime\n","#runtime.unassign()\n","\n","\n"],"metadata":{"id":"1JlaBNIKODCT"},"execution_count":null,"outputs":[]}]}
dataset_builder.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells":[{"cell_type":"code","execution_count":null,"metadata":{"colab":{"background_save":true},"id":"xe6KWSqr3y2_"},"outputs":[],"source":["from google.colab import drive\n","drive.mount('/content/drive')\n","\n","import os\n","from PIL import Image\n","import zipfile\n","from pathlib import Path\n","\n","# === CONFIGURATION ===\n","input_folder = '/content/drive/MyDrive/backgrounds_raw'\n","output_folder = '/content/drive/MyDrive/backgrounds_cropped'\n","zip_path = '/content/drive/MyDrive/backgrounds_cropped_squares.zip'\n","frame_size = 1024 # Size of each square frame\n","step_size = 512 # Step size for sliding window (controls overlap)\n","pad_color = (24, 24, 24) # RGB for #181818\n","\n","# Create output folder\n","os.makedirs(output_folder, exist_ok=True)\n","\n","# Supported extensions\n","extensions = ('.jpg', '.jpeg', '.JPG', '.JPEG', '.webp', '.WEBP')\n","\n","# Initialize zip file\n","with zipfile.ZipFile(zip_path, 'w') as zipf:\n"," # Process each image\n"," for filename in os.listdir(input_folder):\n"," if filename.lower().endswith(extensions):\n"," img_path = os.path.join(input_folder, filename)\n","\n"," try:\n"," with Image.open(img_path) as img:\n"," img = img.convert('RGB') # Ensure image is in RGB format\n"," width, height = img.size\n","\n"," # Pad image if smaller than frame_size\n"," if width < frame_size or height < frame_size:\n"," new_width = max(width, frame_size)\n"," new_height = max(height, frame_size)\n"," padded_img = Image.new('RGB', (new_width, new_height), pad_color)\n"," # Center the original image on the padded canvas\n"," paste_x = (new_width - width) // 2\n"," paste_y = (new_height - height) // 2\n"," padded_img.paste(img, (paste_x, paste_y))\n"," img = padded_img\n"," width, height = img.size\n","\n"," # Calculate number of possible frames in x and y directions\n"," num_x = max(1, (width - frame_size) // step_size + 1)\n"," num_y = max(1, (height - frame_size) // step_size + 1)\n","\n"," frame_count = 0\n"," # Slide window across image\n"," for y in range(0, max(height - frame_size + 1, 1), step_size):\n"," for x in range(0, max(width - frame_size + 1, 1), step_size):\n"," # Ensure we don't go beyond image boundaries\n"," if x + frame_size <= width and y + frame_size <= height:\n"," # Crop frame\n"," frame = img.crop((x, y, x + frame_size, y + frame_size))\n"," frame_name = f\"{Path(filename).stem}_frame_{frame_count}.jpg\"\n"," frame_save_path = os.path.join(output_folder, frame_name)\n"," frame.save(frame_save_path, \"JPEG\", quality=100)\n"," zipf.write(frame_save_path, arcname=frame_name)\n"," frame_count += 1\n","\n"," print(f\"Processed: {filename} β†’ {frame_count} frames\")\n","\n"," except Exception as e:\n"," print(f\"Error processing {filename}: {e}\")\n","\n","print(f\"\\nAll done! Cropped images saved in:\\n{output_folder}\")\n","print(f\"ZIP file created at:\\n{zip_path}\")"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":135,"referenced_widgets":["903f51f8340e4ee8ad4b2fdee19209c1","659aa3a9509946409fb36b31cb4297d1","7b1c28abe8da4fa88b61b7b969670bdd","c37b743019054467b7f291c232b795eb","82f7fc12560c45139e4913522b26c283","08cf4eacb2024ffaa234b58363cd5a63"]},"executionInfo":{"elapsed":1229,"status":"ok","timestamp":1761732167157,"user":{"displayName":"No Name","userId":"10578412414437288386"},"user_tz":-60},"id":"ytb7bz9zYIJL","outputId":"79cfc196-6ddc-4038-e8bd-cb9a8a53d3a9"},"outputs":[{"name":"stdout","output_type":"stream","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n","Adjust settings below, then run the next cell:\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"903f51f8340e4ee8ad4b2fdee19209c1","version_major":2,"version_minor":0},"text/plain":["IntSlider(value=10, description='Border (px):', style=SliderStyle(description_width='initial'))"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"c37b743019054467b7f291c232b795eb","version_major":2,"version_minor":0},"text/plain":["IntSlider(value=30, description='Corner Radius (px):', max=200, style=SliderStyle(description_width='initial')…"]},"metadata":{},"output_type":"display_data"}],"source":["# @title # Rounded Background Composer (1024x1024)\n","\n","from google.colab import drive\n","drive.mount('/content/drive')\n","\n","import os\n","from PIL import Image, ImageDraw\n","import zipfile\n","from pathlib import Path\n","import ipywidgets as widgets\n","from IPython.display import display\n","\n","# === CONFIGURATION ===\n","input_folder = '/content/drive/MyDrive/backgrounds_cropped' # from previous step\n","output_folder = '/content/drive/MyDrive/backgrounds_final_rounded'\n","zip_path = '/content/drive/MyDrive/backgrounds_final_rounded.zip'\n","\n","os.makedirs(output_folder, exist_ok=True)\n","\n","CANVAS_SIZE = 1024\n","BG_COLOR = (24, 24, 24) # #181818\n","\n","# === Interactive Sliders ===\n","print(\"Adjust settings below, then run the next cell:\")\n","\n","border_slider = widgets.IntSlider(\n"," value=10, min=0, max=100, step=1,\n"," description='Border (px):',\n"," style={'description_width': 'initial'}\n",")\n","\n","radius_slider = widgets.IntSlider(\n"," value=30, min=0, max=200, step=1,\n"," description='Corner Radius (px):',\n"," style={'description_width': 'initial'}\n",")\n","\n","display(border_slider, radius_slider)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jBdlKK8JYvj4"},"outputs":[],"source":["# @title Run Processing (after setting sliders)\n","\n","border_size = border_slider.value\n","corner_radius = radius_slider.value\n","\n","print(f\"Using: Border = {border_size}px | Corner Radius = {corner_radius}px\")\n","\n","# Helper: Create rounded mask\n","def create_rounded_mask(size, radius):\n"," mask = Image.new('L', size, 0)\n"," draw = ImageDraw.Draw(mask)\n"," draw.rounded_rectangle([(0,0), size], radius, fill=255)\n"," return mask\n","\n","# Supported extensions\n","extensions = ('.jpg', '.jpeg', '.png', '.webp')\n","\n","with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:\n"," processed = 0\n","\n"," for filename in os.listdir(input_folder):\n"," if filename.lower().endswith(extensions):\n"," img_path = os.path.join(input_folder, filename)\n","\n"," try:\n"," with Image.open(img_path).convert(\"RGB\") as img:\n"," # --- Create canvas ---\n"," canvas = Image.new(\"RGB\", (CANVAS_SIZE, CANVAS_SIZE), BG_COLOR)\n","\n"," # --- Inner area size ---\n"," inner_size = CANVAS_SIZE - 2 * border_size\n"," if inner_size <= 0:\n"," print(f\"Skip {filename}: border too large\")\n"," continue\n","\n"," # --- Resize image to fit inner area ---\n"," img_resized = img.resize((inner_size, inner_size), Image.LANCZOS)\n","\n"," # --- Apply rounded corners ---\n"," if corner_radius > 0:\n"," radius = min(corner_radius, inner_size // 2)\n"," mask = create_rounded_mask((inner_size, inner_size), radius)\n"," rounded_img = Image.new(\"RGBA\", (inner_size, inner_size), (0,0,0,0))\n"," rounded_img.paste(img_resized, (0,0))\n"," rounded_img.putalpha(mask)\n"," # Convert back to RGB by compositing on gray\n"," final_inner = Image.new(\"RGB\", (inner_size, inner_size), BG_COLOR)\n"," final_inner.paste(rounded_img, (0,0), rounded_img)\n"," else:\n"," final_inner = img_resized\n","\n"," # --- Paste in center ---\n"," paste_x = border_size\n"," paste_y = border_size\n"," canvas.paste(final_inner, (paste_x, paste_y))\n","\n"," # --- Save ---\n"," output_name = f\"{Path(filename).stem}_1024_border{border_size}_r{corner_radius}.png\"\n"," output_path = os.path.join(output_folder, output_name)\n"," canvas.save(output_path, \"PNG\", optimize=True)\n","\n"," # --- Add to ZIP ---\n"," zipf.write(output_path, arcname=output_name)\n","\n"," print(f\"Created: {output_name}\")\n"," processed += 1\n","\n"," except Exception as e:\n"," print(f\"Error with {filename}: {e}\")\n","\n","print(f\"\\nFinished! {processed} images processed.\")\n","print(f\"Folder: {output_folder}\")\n","print(f\"ZIP: {zip_path}\")"]},{"cell_type":"markdown","metadata":{"id":"BEoxbD0jGdcT"},"source":["##Randomly add manga panels to the newly created backgrounds using rembg"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":19792,"status":"ok","timestamp":1761831052316,"user":{"displayName":"No Name","userId":"10578412414437288386"},"user_tz":-60},"id":"q7QyuDEqGXuZ","outputId":"764f2d02-3914-4d29-936a-71564972d4a4"},"outputs":[{"output_type":"stream","name":"stdout","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n","Manga images extracted to /content/\n","Backgrounds folder: /content/drive/MyDrive/backgrounds_final_rounded\n","Output will be saved to: /content/drive/MyDrive/manga_on_backgrounds_67196.zip\n"]}],"source":["# @title 1. Setup & Unzip Manga Images\n","\n","!pip install rembg pillow numpy onnxruntime -q\n","\n","from google.colab import drive\n","drive.mount('/content/drive')\n","\n","import os, random, zipfile, shutil\n","from pathlib import Path\n","from PIL import Image\n","import numpy as np\n","from rembg import remove\n","\n","# === CONFIG ===\n","MANGA_ZIP = '/content/drive/MyDrive/mia_panels_part_004.zip' #@param {type:'string'}\n","BG_FOLDER = '/content/drive/MyDrive/backgrounds_final_rounded' # From previous step\n","OUTPUT_FOLDER = '/content/manga_on_bg'\n","\n","# Generate a random 5-digit number\n","random_suffix = random.randint(10000, 99999) # 5 digits\n","ZIP_OUTPUT = f'/content/drive/MyDrive/manga_on_backgrounds_{random_suffix}.zip'\n","\n","# Unzip manga\n","!unzip -q \"$MANGA_ZIP\" -d /content/\n","\n","# Clean & recreate output\n","if os.path.exists(OUTPUT_FOLDER):\n"," shutil.rmtree(OUTPUT_FOLDER)\n","os.makedirs(OUTPUT_FOLDER, exist_ok=True)\n","\n","print(\"Manga images extracted to /content/\")\n","print(f\"Backgrounds folder: {BG_FOLDER}\")\n","print(f\"Output will be saved to: {ZIP_OUTPUT}\")"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4QjqS42xCzIO"},"outputs":[],"source":["# @title 2. Process: Remove BG β†’ Place on Random Background\n","\n","import os, random, zipfile\n","import numpy as np\n","from PIL import Image\n","from rembg import remove\n","\n","# ------------------------------------------------------------------\n","# 1. Load *all* background images (no left/right split)\n","# ------------------------------------------------------------------\n","all_bgs = [\n"," os.path.join(BG_FOLDER, f)\n"," for f in os.listdir(BG_FOLDER)\n"," if f.lower().endswith(('.png', '.jpg', '.jpeg'))\n","]\n","print(f\"Found {len(all_bgs)} background images (any side)\")\n","\n","# ------------------------------------------------------------------\n","# 2. Find all manga panels\n","# ------------------------------------------------------------------\n","manga_files = sorted(\n"," [f for f in os.listdir('/content')\n"," if f.lower().endswith(('.jpg', '.jpeg', '.png')) and f[0].isdigit()]\n",")\n","print(f\"Processing {len(manga_files)} manga images...\")\n","\n","# ------------------------------------------------------------------\n","# 3. Output ZIP\n","# ------------------------------------------------------------------\n","os.makedirs(OUTPUT_FOLDER, exist_ok=True)\n","\n","with zipfile.ZipFile(ZIP_OUTPUT, 'w', zipfile.ZIP_DEFLATED) as zipf:\n"," for idx, manga_name in enumerate(manga_files, 1):\n"," manga_path = os.path.join('/content', manga_name)\n","\n"," try:\n"," # ---- 1. Open manga & remove background ----\n"," with Image.open(manga_path).convert(\"RGBA\") as manga_img:\n"," manga_np = np.array(manga_img)\n"," output = remove(manga_np) # rembg magic\n"," manga_nobg = Image.fromarray(output).convert(\"RGBA\")\n","\n"," # ---- 2. Pick a *random* background (any side) ----\n"," bg_path = random.choice(all_bgs)\n"," with Image.open(bg_path).convert(\"RGBA\") as bg_img:\n"," bg = bg_img.copy()\n","\n"," # ---- 3. Resize manga to the height of the background ----\n"," target_h = bg.height\n"," ratio = target_h / manga_nobg.height\n"," new_w = int(manga_nobg.width * ratio)\n"," manga_resized = manga_nobg.resize((new_w, target_h), Image.LANCZOS)\n","\n"," # ---- 4. Randomly place on LEFT or RIGHT ----\n"," place_left = random.choice([True, False])\n"," if place_left:\n"," paste_x = 0\n"," align_desc = \"left\"\n"," else:\n"," paste_x = bg.width - manga_resized.width\n"," align_desc = \"right\"\n","\n"," # Paste\n"," bg.paste(manga_resized, (paste_x, 0), manga_resized)\n","\n"," # ---- 5. Save & zip ----\n"," result_name = f\"{idx:03d}_{align_desc}.png\"\n"," result_path = os.path.join(OUTPUT_FOLDER, result_name)\n"," bg.convert(\"RGB\").save(result_path, \"PNG\")\n","\n"," zipf.write(result_path, result_name)\n","\n"," print(f\"{idx}/{len(manga_files)} β†’ {result_name}\")\n","\n"," except Exception as e:\n"," print(f\"Error with {manga_name}: {e}\")\n","\n","print(f\"\\nAll done! ZIP saved to:\\n{ZIP_OUTPUT}\")\n","print(f\"Individual files in:\\n{OUTPUT_FOLDER}\")"]}],"metadata":{"colab":{"provenance":[{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/dataset_builder.ipynb","timestamp":1761823511544},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1761731354034},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1761124521078},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1760628088876},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1756712618300},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1747490904984},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1740037333374},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1736477078136},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1725365086834}]},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"},"widgets":{"application/vnd.jupyter.widget-state+json":{"08cf4eacb2024ffaa234b58363cd5a63":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"SliderStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"initial","handle_color":null}},"659aa3a9509946409fb36b31cb4297d1":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"7b1c28abe8da4fa88b61b7b969670bdd":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"SliderStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"initial","handle_color":null}},"82f7fc12560c45139e4913522b26c283":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"903f51f8340e4ee8ad4b2fdee19209c1":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"IntSliderModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"IntSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"IntSliderView","continuous_update":true,"description":"Border (px):","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_659aa3a9509946409fb36b31cb4297d1","max":100,"min":0,"orientation":"horizontal","readout":true,"readout_format":"d","step":1,"style":"IPY_MODEL_7b1c28abe8da4fa88b61b7b969670bdd","value":10}},"c37b743019054467b7f291c232b795eb":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"IntSliderModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"IntSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"IntSliderView","continuous_update":true,"description":"Corner Radius (px):","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_82f7fc12560c45139e4913522b26c283","max":200,"min":0,"orientation":"horizontal","readout":true,"readout_format":"d","step":1,"style":"IPY_MODEL_08cf4eacb2024ffaa234b58363cd5a63","value":30}}}}},"nbformat":4,"nbformat_minor":0}
 
1
+ {"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"RA4xNLrThSsF"},"outputs":[],"source":["from google.colab import drive\n","drive.mount('/content/drive')\n","\n","import os, random, zipfile, shutil\n","from pathlib import Path\n","from PIL import Image\n","\n","# ==============================================================\n","# CONFIG\n","# ==============================================================\n","RAW_DRIVE = '/content/drive/MyDrive/backgrounds_raw' # folder with *.zip(s)\n","OUT_DRIVE = '/content/drive/MyDrive/backgrounds_cropped' # final crops\n","ZIP_OUT = '/content/drive/MyDrive/backgrounds_cropped_squares.zip'\n","\n","FRAME_SIZE = 1024\n","STEP_SIZE = 512\n","PAD_COLOR = (24, 24, 24) # #181818\n","EXTS = ('.jpg','.jpeg','.JPG','.JPEG','.webp','.WEBP')\n","\n","os.makedirs(OUT_DRIVE, exist_ok=True)\n","\n","# ==============================================================\n","# 1. FIND ALL ZIPs\n","# ==============================================================\n","zip_paths = [os.path.join(RAW_DRIVE, f) for f in os.listdir(RAW_DRIVE)\n"," if f.lower().endswith('.zip')]\n","\n","if not zip_paths:\n"," print(\"No zip files found – nothing to do.\")\n","else:\n"," print(f\"Found {len(zip_paths)} zip file(s):\")\n"," for p in zip_paths: print(\" β€’\", os.path.basename(p))\n","\n","# ==============================================================\n","# 2. PROCESS EACH ZIP\n","# ==============================================================\n","with zipfile.ZipFile(ZIP_OUT, 'w') as master_zip:\n"," total_frames = 0\n","\n"," for zip_idx, zip_path in enumerate(zip_paths, 1):\n"," # ---- extract to a unique temp folder ---------------------------------\n"," temp_dir = f'/content/raw_zip_{zip_idx}'\n"," os.makedirs(temp_dir, exist_ok=True)\n"," print(f\"\\n[{zip_idx}/{len(zip_paths)}] Extracting {os.path.basename(zip_path)} β†’ {temp_dir}\")\n"," with zipfile.ZipFile(zip_path, 'r') as z:\n"," z.extractall(temp_dir)\n","\n"," # ---- walk through every image in this zip ----------------------------\n"," for root, _, files in os.walk(temp_dir):\n"," for filename in files:\n"," if not filename.lower().endswith(EXTS):\n"," continue\n","\n"," img_path = os.path.join(root, filename)\n"," try:\n"," # ---- open & convert ---------------------------------------\n"," with Image.open(img_path) as img:\n"," img = img.convert('RGB')\n"," w, h = img.size\n","\n"," # ---- 1. down-scale if any side > 1024 --------------------\n"," if max(w, h) > FRAME_SIZE:\n"," scale = FRAME_SIZE / max(w, h)\n"," w, h = int(w*scale), int(h*scale)\n"," img = img.resize((w, h), Image.LANCZOS)\n"," # print(f\" ↓ {filename} β†’ {w}Γ—{h}\")\n","\n"," # ---- 2. random-pad if any side < 1024 --------------------\n"," if w < FRAME_SIZE or h < FRAME_SIZE:\n"," target_w = max(w, FRAME_SIZE)\n"," target_h = max(h, FRAME_SIZE)\n","\n"," pad_l = random.randint(0, target_w - w)\n"," pad_r = target_w - w - pad_l\n"," pad_t = random.randint(0, target_h - h)\n"," pad_b = target_h - h - pad_t\n","\n"," padded = Image.new('RGB', (target_w, target_h), PAD_COLOR)\n"," padded.paste(img, (pad_l, pad_t))\n"," img = padded\n"," w, h = target_w, target_h\n"," # print(f\" ↔ {filename} β†’ {w}Γ—{h}\")\n","\n"," # ---- 3. sliding-window crops -----------------------------\n"," frame_cnt = 0\n"," for y in range(0, max(h - FRAME_SIZE + 1, 1), STEP_SIZE):\n"," for x in range(0, max(w - FRAME_SIZE + 1, 1), STEP_SIZE):\n"," if x + FRAME_SIZE > w or y + FRAME_SIZE > h:\n"," continue\n","\n"," crop = img.crop((x, y, x + FRAME_SIZE, y + FRAME_SIZE))\n","\n"," # use zip-index + original name to avoid collisions\n"," crop_name = f\"zip{zip_idx}_{Path(filename).stem}_f{frame_cnt}.jpg\"\n"," crop_path = os.path.join(OUT_DRIVE, crop_name)\n","\n"," crop.save(crop_path, \"JPEG\", quality=100)\n"," master_zip.write(crop_path, arcname=crop_name)\n","\n"," frame_cnt += 1\n"," total_frames += 1\n","\n"," if frame_cnt:\n"," print(f\" β†’ {filename} β†’ {frame_cnt} crop(s)\")\n","\n"," except Exception as e:\n"," print(f\" [ERROR] {filename}: {e}\")\n","\n"," # ---- clean this zip’s temp folder ---------------------------------\n"," print(f\"Cleaning {temp_dir} …\")\n"," shutil.rmtree(temp_dir, ignore_errors=True)\n","\n","# ==============================================================\n","# DONE\n","# ==============================================================\n","print(\"\\n=== ALL DONE ===\")\n","print(f\"Total crops created : {total_frames}\")\n","print(f\"Saved in : {OUT_DRIVE}\")\n","print(f\"ZIP archive : {ZIP_OUT}\")"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":135,"referenced_widgets":["38942041c32046f5bfd797c87436289d","234b2bce9d984c22ac4bcede6420b386","1234cf5cf43a4434bcec412a1fb30ea5","78f19506534943eaa6d3dd98186e8add","8e5d1c0c35544bb8ac3a0d6dfbfd3285","24d6ac75fd28425e8cd9acdbf920b043"]},"executionInfo":{"elapsed":1906,"status":"ok","timestamp":1762002404065,"user":{"displayName":"","userId":""},"user_tz":-60},"id":"ytb7bz9zYIJL","outputId":"ad3a9582-5e2c-48de-f9bd-d11b2730bb29"},"outputs":[{"name":"stdout","output_type":"stream","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n","Adjust settings below, then run the next cell:\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"38942041c32046f5bfd797c87436289d","version_major":2,"version_minor":0},"text/plain":["IntSlider(value=10, description='Border (px):', style=SliderStyle(description_width='initial'))"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"78f19506534943eaa6d3dd98186e8add","version_major":2,"version_minor":0},"text/plain":["IntSlider(value=30, description='Corner Radius (px):', max=200, style=SliderStyle(description_width='initial')…"]},"metadata":{},"output_type":"display_data"}],"source":["# @title # Rounded Background Composer (1024x1024)\n","\n","from google.colab import drive\n","drive.mount('/content/drive')\n","\n","import os\n","from PIL import Image, ImageDraw\n","import zipfile\n","from pathlib import Path\n","import ipywidgets as widgets\n","from IPython.display import display\n","\n","# === CONFIGURATION ===\n","input_folder = '/content/drive/MyDrive/backgrounds_cropped' # from previous step\n","output_folder = '/content/drive/MyDrive/backgrounds_final_rounded'\n","zip_path = '/content/drive/MyDrive/backgrounds_final_rounded.zip'\n","\n","os.makedirs(output_folder, exist_ok=True)\n","\n","CANVAS_SIZE = 1024\n","BG_COLOR = (24, 24, 24) # #181818\n","\n","# === Interactive Sliders ===\n","print(\"Adjust settings below, then run the next cell:\")\n","\n","border_slider = widgets.IntSlider(\n"," value=10, min=0, max=100, step=1,\n"," description='Border (px):',\n"," style={'description_width': 'initial'}\n",")\n","\n","radius_slider = widgets.IntSlider(\n"," value=30, min=0, max=200, step=1,\n"," description='Corner Radius (px):',\n"," style={'description_width': 'initial'}\n",")\n","\n","display(border_slider, radius_slider)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jBdlKK8JYvj4"},"outputs":[],"source":["# @title Run Processing (after setting sliders)\n","\n","border_size = border_slider.value\n","corner_radius = radius_slider.value\n","\n","print(f\"Using: Border = {border_size}px | Corner Radius = {corner_radius}px\")\n","\n","# Helper: Create rounded mask\n","def create_rounded_mask(size, radius):\n"," mask = Image.new('L', size, 0)\n"," draw = ImageDraw.Draw(mask)\n"," draw.rounded_rectangle([(0,0), size], radius, fill=255)\n"," return mask\n","\n","# Supported extensions\n","extensions = ('.jpg', '.jpeg', '.png', '.webp')\n","\n","with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:\n"," processed = 0\n","\n"," for filename in os.listdir(input_folder):\n"," if filename.lower().endswith(extensions):\n"," img_path = os.path.join(input_folder, filename)\n","\n"," try:\n"," with Image.open(img_path).convert(\"RGB\") as img:\n"," # --- Create canvas ---\n"," canvas = Image.new(\"RGB\", (CANVAS_SIZE, CANVAS_SIZE), BG_COLOR)\n","\n"," # --- Inner area size ---\n"," inner_size = CANVAS_SIZE - 2 * border_size\n"," if inner_size <= 0:\n"," print(f\"Skip {filename}: border too large\")\n"," continue\n","\n"," # --- Resize image to fit inner area ---\n"," img_resized = img.resize((inner_size, inner_size), Image.LANCZOS)\n","\n"," # --- Apply rounded corners ---\n"," if corner_radius > 0:\n"," radius = min(corner_radius, inner_size // 2)\n"," mask = create_rounded_mask((inner_size, inner_size), radius)\n"," rounded_img = Image.new(\"RGBA\", (inner_size, inner_size), (0,0,0,0))\n"," rounded_img.paste(img_resized, (0,0))\n"," rounded_img.putalpha(mask)\n"," # Convert back to RGB by compositing on gray\n"," final_inner = Image.new(\"RGB\", (inner_size, inner_size), BG_COLOR)\n"," final_inner.paste(rounded_img, (0,0), rounded_img)\n"," else:\n"," final_inner = img_resized\n","\n"," # --- Paste in center ---\n"," paste_x = border_size\n"," paste_y = border_size\n"," canvas.paste(final_inner, (paste_x, paste_y))\n","\n"," # --- Save ---\n"," output_name = f\"{Path(filename).stem}_1024_border{border_size}_r{corner_radius}.png\"\n"," output_path = os.path.join(output_folder, output_name)\n"," canvas.save(output_path, \"PNG\", optimize=True)\n","\n"," # --- Add to ZIP ---\n"," zipf.write(output_path, arcname=output_name)\n","\n"," print(f\"Created: {output_name}\")\n"," processed += 1\n","\n"," except Exception as e:\n"," print(f\"Error with {filename}: {e}\")\n","\n","print(f\"\\nFinished! {processed} images processed.\")\n","print(f\"Folder: {output_folder}\")\n","print(f\"ZIP: {zip_path}\")"]},{"cell_type":"markdown","metadata":{"id":"BEoxbD0jGdcT"},"source":["##Randomly add manga panels to the newly created backgrounds using rembg"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"cpAz5_SRk9FY","executionInfo":{"status":"ok","timestamp":1762003560479,"user_tz":-60,"elapsed":110509,"user":{"displayName":"No Name","userId":"10578412414437288386"}},"outputId":"1516fa9e-42f5-4a4f-bae2-e67cf233f73e"},"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.1/44.1 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.4/17.4 MB\u001b[0m \u001b[31m26.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.7/54.7 kB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hMounted at /content/drive\n","Manga images extracted to /content/\n","Backgrounds folder: /content/drive/MyDrive/backgrounds_final_rounded\n","Output will be saved to: /content/drive/MyDrive/manga_on_backgrounds_34664.zip\n"]}],"source":["# @title 1. Setup & Unzip Manga Images\n","# (unchanged – only the config variables are used later)\n","\n","!pip install rembg pillow numpy onnxruntime -q\n","\n","from google.colab import drive\n","drive.mount('/content/drive')\n","\n","import os, random, zipfile, shutil\n","from pathlib import Path\n","from PIL import Image\n","import numpy as np\n","from rembg import remove\n","\n","# === CONFIG ===\n","MANGA_ZIP = '/content/drive/MyDrive/backgrounds_cropped_squares.zip' #@param {type:'string'}\n","BG_FOLDER = '/content/drive/MyDrive/backgrounds_final_rounded' # From previous step\n","OUTPUT_FOLDER = '/content/manga_on_bg'\n","\n","# Generate a random 5-digit number\n","random_suffix = random.randint(10000, 99999) # 5 digits\n","ZIP_OUTPUT = f'/content/drive/MyDrive/manga_on_backgrounds_{random_suffix}.zip'\n","\n","# Unzip manga\n","!unzip -q \"$MANGA_ZIP\" -d /content/\n","\n","# Clean & recreate output\n","if os.path.exists(OUTPUT_FOLDER):\n"," shutil.rmtree(OUTPUT_FOLDER)\n","os.makedirs(OUTPUT_FOLDER, exist_ok=True)\n","\n","print(\"Manga images extracted to /content/\")\n","print(f\"Backgrounds folder: {BG_FOLDER}\")\n","print(f\"Output will be saved to: {ZIP_OUTPUT}\")"]},{"cell_type":"code","source":["# @title 2. Process: Remove BG β†’ Place on **5 different** Random Backgrounds (with Random Flip)\n","\n","import os, random, zipfile\n","import numpy as np\n","from PIL import Image\n","from rembg import remove\n","\n","# ------------------------------------------------------------------\n","# 1. Load *all* background images\n","# ------------------------------------------------------------------\n","all_bgs = [\n"," os.path.join(BG_FOLDER, f)\n"," for f in os.listdir(BG_FOLDER)\n"," if f.lower().endswith(('.png', '.jpg', '.jpeg'))\n","]\n","print(f\"Found {len(all_bgs)} background images\")\n","\n","# ------------------------------------------------------------------\n","# 2. Find all manga panels (FIXED: no f[0].isdigit() restriction)\n","# ------------------------------------------------------------------\n","manga_files = sorted([\n"," f for f in os.listdir('/content')\n"," if f.lower().endswith(('.jpg', '.jpeg', '.png'))\n"," and not f.startswith('.') # ignore hidden files\n"," and os.path.isfile(os.path.join('/content', f))\n","])\n","print(f\"Processing {len(manga_files)} manga images: {manga_files[:5]}...\" if manga_files else \"No manga images found!\")\n","\n","# ------------------------------------------------------------------\n","# 3. Output ZIP\n","# ------------------------------------------------------------------\n","os.makedirs(OUTPUT_FOLDER, exist_ok=True)\n","\n","with zipfile.ZipFile(ZIP_OUTPUT, 'w', zipfile.ZIP_DEFLATED) as zipf:\n"," for idx, manga_name in enumerate(manga_files, 1):\n"," manga_path = os.path.join('/content', manga_name)\n","\n"," try:\n"," # ---- Open manga & remove background (once) ----\n"," with Image.open(manga_path).convert(\"RGBA\") as manga_img:\n"," manga_np = np.array(manga_img)\n"," output = remove(manga_np)\n"," manga_nobg = Image.fromarray(output).convert(\"RGBA\")\n","\n"," # ---- Pick 5 different random backgrounds ----\n"," chosen_bgs = random.sample(all_bgs, k=min(5, len(all_bgs)))\n","\n"," for bg_idx, bg_path in enumerate(chosen_bgs, 1):\n"," with Image.open(bg_path).convert(\"RGBA\") as bg_img:\n"," bg = bg_img.copy()\n","\n"," # ---- Resize manga to background height ----\n"," target_h = bg.height\n"," ratio = target_h / manga_nobg.height\n"," new_w = int(manga_nobg.width * ratio)\n"," manga_resized = manga_nobg.resize((new_w, target_h), Image.LANCZOS)\n","\n"," # ---- Generate LEFT and RIGHT versions ----\n"," for place_left in (True, False):\n"," paste_x = 0 if place_left else bg.width - manga_resized.width\n"," align_desc = \"left\" if place_left else \"right\"\n","\n"," # ---- Random flip (50% chance) ----\n"," manga_to_paste = manga_resized.copy()\n"," if random.random() < 0.5:\n"," manga_to_paste = manga_to_paste.transpose(Image.FLIP_LEFT_RIGHT)\n"," flip_desc = \"flip\"\n"," else:\n"," flip_desc = \"noflip\"\n","\n"," # Paste\n"," result_bg = bg.copy()\n"," result_bg.paste(manga_to_paste, (paste_x, 0), manga_to_paste)\n","\n"," # ---- Save & zip ----\n"," result_name = f\"{idx:03d}_bg{bg_idx:02d}_{align_desc}_{flip_desc}.png\"\n"," result_path = os.path.join(OUTPUT_FOLDER, result_name)\n"," result_bg.convert(\"RGB\").save(result_path, \"PNG\")\n"," zipf.write(result_path, result_name)\n","\n"," print(f\"{idx}/{len(manga_files)} β†’ {result_name}\")\n","\n"," except Exception as e:\n"," print(f\"Error with {manga_name}: {e}\")\n","\n","print(f\"\\nAll done! ZIP saved to:\\n{ZIP_OUTPUT}\")\n","print(f\"Individual files in:\\n{OUTPUT_FOLDER}\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"LRQnfaQynn6h","outputId":"73774fe5-8a27-458c-8d50-5fdf610a4a02"},"execution_count":null,"outputs":[{"metadata":{"tags":null},"name":"stderr","output_type":"stream","text":["Downloading data from 'https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net.onnx' to file '/root/.u2net/u2net.onnx'.\n"]},{"metadata":{"tags":null},"name":"stdout","output_type":"stream","text":["Found 634 background images\n","Processing 634 manga images: ['zip1_008e679eb0a5080a373abbefa0ef7570_f0.jpg', 'zip1_06b225f210d032734c22758475a462bc_f0.jpg', 'zip1_12717f1849c5791b41958543e394ed24_f0.jpg', 'zip1_14c7e9cf5d9251efb5c70c70bda8ea5a_f0.jpg', 'zip1_1e44ed908d7585349f4072a6c446d8f9_f0.jpg']...\n"]},{"metadata":{"tags":null},"name":"stderr","output_type":"stream","text":["100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176M/176M [00:00<00:00, 92.1GB/s]\n"]},{"output_type":"stream","name":"stdout","text":["1/634 β†’ 001_bg01_left_flip.png\n","1/634 β†’ 001_bg01_right_flip.png\n","1/634 β†’ 001_bg02_left_noflip.png\n","1/634 β†’ 001_bg02_right_noflip.png\n","1/634 β†’ 001_bg03_left_noflip.png\n","1/634 β†’ 001_bg03_right_flip.png\n","1/634 β†’ 001_bg04_left_noflip.png\n","1/634 β†’ 001_bg04_right_flip.png\n","1/634 β†’ 001_bg05_left_noflip.png\n","1/634 β†’ 001_bg05_right_noflip.png\n","2/634 β†’ 002_bg01_left_flip.png\n","2/634 β†’ 002_bg01_right_noflip.png\n","2/634 β†’ 002_bg02_left_flip.png\n","2/634 β†’ 002_bg02_right_flip.png\n","2/634 β†’ 002_bg03_left_noflip.png\n","2/634 β†’ 002_bg03_right_flip.png\n","2/634 β†’ 002_bg04_left_flip.png\n","2/634 β†’ 002_bg04_right_flip.png\n","2/634 β†’ 002_bg05_left_flip.png\n","2/634 β†’ 002_bg05_right_flip.png\n","3/634 β†’ 003_bg01_left_flip.png\n","3/634 β†’ 003_bg01_right_flip.png\n","3/634 β†’ 003_bg02_left_flip.png\n","3/634 β†’ 003_bg02_right_flip.png\n","3/634 β†’ 003_bg03_left_flip.png\n","3/634 β†’ 003_bg03_right_flip.png\n","3/634 β†’ 003_bg04_left_flip.png\n","3/634 β†’ 003_bg04_right_noflip.png\n","3/634 β†’ 003_bg05_left_flip.png\n","3/634 β†’ 003_bg05_right_flip.png\n","4/634 β†’ 004_bg01_left_flip.png\n","4/634 β†’ 004_bg01_right_flip.png\n","4/634 β†’ 004_bg02_left_noflip.png\n","4/634 β†’ 004_bg02_right_noflip.png\n","4/634 β†’ 004_bg03_left_noflip.png\n","4/634 β†’ 004_bg03_right_noflip.png\n","4/634 β†’ 004_bg04_left_noflip.png\n","4/634 β†’ 004_bg04_right_noflip.png\n","4/634 β†’ 004_bg05_left_noflip.png\n","4/634 β†’ 004_bg05_right_flip.png\n","5/634 β†’ 005_bg01_left_noflip.png\n","5/634 β†’ 005_bg01_right_flip.png\n","5/634 β†’ 005_bg02_left_noflip.png\n","5/634 β†’ 005_bg02_right_noflip.png\n","5/634 β†’ 005_bg03_left_flip.png\n","5/634 β†’ 005_bg03_right_flip.png\n","5/634 β†’ 005_bg04_left_flip.png\n","5/634 β†’ 005_bg04_right_flip.png\n","5/634 β†’ 005_bg05_left_noflip.png\n","5/634 β†’ 005_bg05_right_flip.png\n","6/634 β†’ 006_bg01_left_noflip.png\n","6/634 β†’ 006_bg01_right_flip.png\n","6/634 β†’ 006_bg02_left_noflip.png\n","6/634 β†’ 006_bg02_right_noflip.png\n","6/634 β†’ 006_bg03_left_flip.png\n","6/634 β†’ 006_bg03_right_flip.png\n","6/634 β†’ 006_bg04_left_flip.png\n","6/634 β†’ 006_bg04_right_flip.png\n","6/634 β†’ 006_bg05_left_flip.png\n","6/634 β†’ 006_bg05_right_flip.png\n","7/634 β†’ 007_bg01_left_noflip.png\n","7/634 β†’ 007_bg01_right_flip.png\n","7/634 β†’ 007_bg02_left_flip.png\n","7/634 β†’ 007_bg02_right_flip.png\n","7/634 β†’ 007_bg03_left_flip.png\n","7/634 β†’ 007_bg03_right_noflip.png\n","7/634 β†’ 007_bg04_left_noflip.png\n","7/634 β†’ 007_bg04_right_flip.png\n","7/634 β†’ 007_bg05_left_flip.png\n","7/634 β†’ 007_bg05_right_noflip.png\n","8/634 β†’ 008_bg01_left_noflip.png\n","8/634 β†’ 008_bg01_right_flip.png\n","8/634 β†’ 008_bg02_left_noflip.png\n","8/634 β†’ 008_bg02_right_noflip.png\n","8/634 β†’ 008_bg03_left_flip.png\n","8/634 β†’ 008_bg03_right_noflip.png\n","8/634 β†’ 008_bg04_left_noflip.png\n","8/634 β†’ 008_bg04_right_noflip.png\n","8/634 β†’ 008_bg05_left_flip.png\n","8/634 β†’ 008_bg05_right_flip.png\n","9/634 β†’ 009_bg01_left_noflip.png\n","9/634 β†’ 009_bg01_right_flip.png\n","9/634 β†’ 009_bg02_left_noflip.png\n","9/634 β†’ 009_bg02_right_flip.png\n","9/634 β†’ 009_bg03_left_flip.png\n","9/634 β†’ 009_bg03_right_flip.png\n","9/634 β†’ 009_bg04_left_noflip.png\n","9/634 β†’ 009_bg04_right_flip.png\n","9/634 β†’ 009_bg05_left_flip.png\n","9/634 β†’ 009_bg05_right_noflip.png\n","10/634 β†’ 010_bg01_left_noflip.png\n","10/634 β†’ 010_bg01_right_noflip.png\n","10/634 β†’ 010_bg02_left_flip.png\n","10/634 β†’ 010_bg02_right_noflip.png\n","10/634 β†’ 010_bg03_left_noflip.png\n","10/634 β†’ 010_bg03_right_flip.png\n","10/634 β†’ 010_bg04_left_noflip.png\n","10/634 β†’ 010_bg04_right_flip.png\n","10/634 β†’ 010_bg05_left_flip.png\n","10/634 β†’ 010_bg05_right_noflip.png\n","11/634 β†’ 011_bg01_left_flip.png\n","11/634 β†’ 011_bg01_right_flip.png\n","11/634 β†’ 011_bg02_left_noflip.png\n","11/634 β†’ 011_bg02_right_flip.png\n","11/634 β†’ 011_bg03_left_flip.png\n","11/634 β†’ 011_bg03_right_flip.png\n","11/634 β†’ 011_bg04_left_noflip.png\n","11/634 β†’ 011_bg04_right_noflip.png\n","11/634 β†’ 011_bg05_left_noflip.png\n","11/634 β†’ 011_bg05_right_flip.png\n","12/634 β†’ 012_bg01_left_flip.png\n","12/634 β†’ 012_bg01_right_flip.png\n","12/634 β†’ 012_bg02_left_noflip.png\n","12/634 β†’ 012_bg02_right_flip.png\n","12/634 β†’ 012_bg03_left_flip.png\n","12/634 β†’ 012_bg03_right_flip.png\n","12/634 β†’ 012_bg04_left_flip.png\n","12/634 β†’ 012_bg04_right_flip.png\n","12/634 β†’ 012_bg05_left_noflip.png\n","12/634 β†’ 012_bg05_right_noflip.png\n","13/634 β†’ 013_bg01_left_flip.png\n","13/634 β†’ 013_bg01_right_flip.png\n","13/634 β†’ 013_bg02_left_flip.png\n","13/634 β†’ 013_bg02_right_noflip.png\n","13/634 β†’ 013_bg03_left_noflip.png\n","13/634 β†’ 013_bg03_right_flip.png\n","13/634 β†’ 013_bg04_left_noflip.png\n","13/634 β†’ 013_bg04_right_flip.png\n","13/634 β†’ 013_bg05_left_flip.png\n","13/634 β†’ 013_bg05_right_noflip.png\n","14/634 β†’ 014_bg01_left_flip.png\n","14/634 β†’ 014_bg01_right_flip.png\n","14/634 β†’ 014_bg02_left_flip.png\n","14/634 β†’ 014_bg02_right_noflip.png\n","14/634 β†’ 014_bg03_left_noflip.png\n","14/634 β†’ 014_bg03_right_flip.png\n","14/634 β†’ 014_bg04_left_noflip.png\n","14/634 β†’ 014_bg04_right_noflip.png\n","14/634 β†’ 014_bg05_left_noflip.png\n","14/634 β†’ 014_bg05_right_flip.png\n","15/634 β†’ 015_bg01_left_noflip.png\n","15/634 β†’ 015_bg01_right_flip.png\n","15/634 β†’ 015_bg02_left_noflip.png\n","15/634 β†’ 015_bg02_right_flip.png\n","15/634 β†’ 015_bg03_left_noflip.png\n","15/634 β†’ 015_bg03_right_noflip.png\n","15/634 β†’ 015_bg04_left_noflip.png\n","15/634 β†’ 015_bg04_right_flip.png\n","15/634 β†’ 015_bg05_left_noflip.png\n","15/634 β†’ 015_bg05_right_noflip.png\n","16/634 β†’ 016_bg01_left_noflip.png\n","16/634 β†’ 016_bg01_right_flip.png\n","16/634 β†’ 016_bg02_left_noflip.png\n","16/634 β†’ 016_bg02_right_flip.png\n","16/634 β†’ 016_bg03_left_noflip.png\n","16/634 β†’ 016_bg03_right_flip.png\n","16/634 β†’ 016_bg04_left_flip.png\n","16/634 β†’ 016_bg04_right_noflip.png\n","16/634 β†’ 016_bg05_left_noflip.png\n","16/634 β†’ 016_bg05_right_noflip.png\n","17/634 β†’ 017_bg01_left_noflip.png\n","17/634 β†’ 017_bg01_right_noflip.png\n","17/634 β†’ 017_bg02_left_flip.png\n","17/634 β†’ 017_bg02_right_noflip.png\n","17/634 β†’ 017_bg03_left_flip.png\n","17/634 β†’ 017_bg03_right_flip.png\n","17/634 β†’ 017_bg04_left_noflip.png\n","17/634 β†’ 017_bg04_right_flip.png\n","17/634 β†’ 017_bg05_left_flip.png\n","17/634 β†’ 017_bg05_right_flip.png\n","18/634 β†’ 018_bg01_left_flip.png\n","18/634 β†’ 018_bg01_right_noflip.png\n","18/634 β†’ 018_bg02_left_noflip.png\n","18/634 β†’ 018_bg02_right_flip.png\n","18/634 β†’ 018_bg03_left_noflip.png\n","18/634 β†’ 018_bg03_right_flip.png\n","18/634 β†’ 018_bg04_left_noflip.png\n","18/634 β†’ 018_bg04_right_flip.png\n","18/634 β†’ 018_bg05_left_noflip.png\n","18/634 β†’ 018_bg05_right_noflip.png\n","19/634 β†’ 019_bg01_left_noflip.png\n","19/634 β†’ 019_bg01_right_flip.png\n","19/634 β†’ 019_bg02_left_flip.png\n","19/634 β†’ 019_bg02_right_flip.png\n","19/634 β†’ 019_bg03_left_flip.png\n","19/634 β†’ 019_bg03_right_flip.png\n","19/634 β†’ 019_bg04_left_flip.png\n","19/634 β†’ 019_bg04_right_flip.png\n","19/634 β†’ 019_bg05_left_noflip.png\n","19/634 β†’ 019_bg05_right_noflip.png\n","20/634 β†’ 020_bg01_left_noflip.png\n","20/634 β†’ 020_bg01_right_flip.png\n","20/634 β†’ 020_bg02_left_flip.png\n","20/634 β†’ 020_bg02_right_flip.png\n","20/634 β†’ 020_bg03_left_flip.png\n","20/634 β†’ 020_bg03_right_noflip.png\n","20/634 β†’ 020_bg04_left_flip.png\n","20/634 β†’ 020_bg04_right_flip.png\n","20/634 β†’ 020_bg05_left_flip.png\n","20/634 β†’ 020_bg05_right_flip.png\n","21/634 β†’ 021_bg01_left_noflip.png\n","21/634 β†’ 021_bg01_right_flip.png\n","21/634 β†’ 021_bg02_left_noflip.png\n","21/634 β†’ 021_bg02_right_flip.png\n","21/634 β†’ 021_bg03_left_noflip.png\n","21/634 β†’ 021_bg03_right_flip.png\n","21/634 β†’ 021_bg04_left_flip.png\n","21/634 β†’ 021_bg04_right_flip.png\n","21/634 β†’ 021_bg05_left_noflip.png\n","21/634 β†’ 021_bg05_right_noflip.png\n","22/634 β†’ 022_bg01_left_flip.png\n","22/634 β†’ 022_bg01_right_noflip.png\n","22/634 β†’ 022_bg02_left_noflip.png\n","22/634 β†’ 022_bg02_right_flip.png\n","22/634 β†’ 022_bg03_left_noflip.png\n","22/634 β†’ 022_bg03_right_noflip.png\n","22/634 β†’ 022_bg04_left_flip.png\n","22/634 β†’ 022_bg04_right_flip.png\n","22/634 β†’ 022_bg05_left_noflip.png\n","22/634 β†’ 022_bg05_right_flip.png\n","23/634 β†’ 023_bg01_left_flip.png\n","23/634 β†’ 023_bg01_right_noflip.png\n","23/634 β†’ 023_bg02_left_noflip.png\n","23/634 β†’ 023_bg02_right_flip.png\n","23/634 β†’ 023_bg03_left_flip.png\n","23/634 β†’ 023_bg03_right_noflip.png\n","23/634 β†’ 023_bg04_left_noflip.png\n","23/634 β†’ 023_bg04_right_noflip.png\n","23/634 β†’ 023_bg05_left_noflip.png\n","23/634 β†’ 023_bg05_right_noflip.png\n","24/634 β†’ 024_bg01_left_flip.png\n","24/634 β†’ 024_bg01_right_flip.png\n","24/634 β†’ 024_bg02_left_flip.png\n","24/634 β†’ 024_bg02_right_flip.png\n","24/634 β†’ 024_bg03_left_flip.png\n","24/634 β†’ 024_bg03_right_noflip.png\n","24/634 β†’ 024_bg04_left_flip.png\n","24/634 β†’ 024_bg04_right_flip.png\n","24/634 β†’ 024_bg05_left_flip.png\n","24/634 β†’ 024_bg05_right_noflip.png\n","25/634 β†’ 025_bg01_left_flip.png\n","25/634 β†’ 025_bg01_right_flip.png\n","25/634 β†’ 025_bg02_left_noflip.png\n","25/634 β†’ 025_bg02_right_flip.png\n","25/634 β†’ 025_bg03_left_noflip.png\n","25/634 β†’ 025_bg03_right_flip.png\n","25/634 β†’ 025_bg04_left_flip.png\n","25/634 β†’ 025_bg04_right_noflip.png\n","25/634 β†’ 025_bg05_left_flip.png\n","25/634 β†’ 025_bg05_right_noflip.png\n","26/634 β†’ 026_bg01_left_flip.png\n","26/634 β†’ 026_bg01_right_noflip.png\n","26/634 β†’ 026_bg02_left_flip.png\n","26/634 β†’ 026_bg02_right_flip.png\n","26/634 β†’ 026_bg03_left_noflip.png\n","26/634 β†’ 026_bg03_right_noflip.png\n","26/634 β†’ 026_bg04_left_noflip.png\n","26/634 β†’ 026_bg04_right_flip.png\n","26/634 β†’ 026_bg05_left_flip.png\n","26/634 β†’ 026_bg05_right_noflip.png\n","27/634 β†’ 027_bg01_left_noflip.png\n","27/634 β†’ 027_bg01_right_flip.png\n","27/634 β†’ 027_bg02_left_flip.png\n","27/634 β†’ 027_bg02_right_flip.png\n","27/634 β†’ 027_bg03_left_flip.png\n","27/634 β†’ 027_bg03_right_flip.png\n","27/634 β†’ 027_bg04_left_noflip.png\n","27/634 β†’ 027_bg04_right_flip.png\n","27/634 β†’ 027_bg05_left_noflip.png\n","27/634 β†’ 027_bg05_right_flip.png\n","28/634 β†’ 028_bg01_left_flip.png\n","28/634 β†’ 028_bg01_right_noflip.png\n","28/634 β†’ 028_bg02_left_flip.png\n","28/634 β†’ 028_bg02_right_flip.png\n","28/634 β†’ 028_bg03_left_flip.png\n","28/634 β†’ 028_bg03_right_flip.png\n","28/634 β†’ 028_bg04_left_flip.png\n","28/634 β†’ 028_bg04_right_noflip.png\n","28/634 β†’ 028_bg05_left_flip.png\n","28/634 β†’ 028_bg05_right_flip.png\n","29/634 β†’ 029_bg01_left_noflip.png\n","29/634 β†’ 029_bg01_right_noflip.png\n","29/634 β†’ 029_bg02_left_flip.png\n","29/634 β†’ 029_bg02_right_noflip.png\n","29/634 β†’ 029_bg03_left_noflip.png\n","29/634 β†’ 029_bg03_right_noflip.png\n","29/634 β†’ 029_bg04_left_flip.png\n","29/634 β†’ 029_bg04_right_noflip.png\n","29/634 β†’ 029_bg05_left_flip.png\n","29/634 β†’ 029_bg05_right_noflip.png\n","30/634 β†’ 030_bg01_left_noflip.png\n","30/634 β†’ 030_bg01_right_flip.png\n","30/634 β†’ 030_bg02_left_noflip.png\n","30/634 β†’ 030_bg02_right_flip.png\n","30/634 β†’ 030_bg03_left_flip.png\n","30/634 β†’ 030_bg03_right_flip.png\n","30/634 β†’ 030_bg04_left_noflip.png\n","30/634 β†’ 030_bg04_right_noflip.png\n","30/634 β†’ 030_bg05_left_flip.png\n","30/634 β†’ 030_bg05_right_noflip.png\n"]}]}],"metadata":{"colab":{"provenance":[{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/dataset_builder.ipynb","timestamp":1762002927139},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/dataset_builder.ipynb","timestamp":1761823511544},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1761731354034},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1761124521078},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1760628088876},{"file_id":"https://huggingface.co/datasets/codeShare/lora-training-data/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1756712618300},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1747490904984},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1740037333374},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1736477078136},{"file_id":"https://huggingface.co/codeShare/JupyterNotebooks/blob/main/YT-playlist-to-mp3.ipynb","timestamp":1725365086834}]},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"},"widgets":{"application/vnd.jupyter.widget-state+json":{"1234cf5cf43a4434bcec412a1fb30ea5":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"SliderStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"initial","handle_color":null}},"234b2bce9d984c22ac4bcede6420b386":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"24d6ac75fd28425e8cd9acdbf920b043":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"SliderStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"SliderStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":"initial","handle_color":null}},"38942041c32046f5bfd797c87436289d":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"IntSliderModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"IntSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"IntSliderView","continuous_update":true,"description":"Border (px):","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_234b2bce9d984c22ac4bcede6420b386","max":100,"min":0,"orientation":"horizontal","readout":true,"readout_format":"d","step":1,"style":"IPY_MODEL_1234cf5cf43a4434bcec412a1fb30ea5","value":33}},"78f19506534943eaa6d3dd98186e8add":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"IntSliderModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"IntSliderModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"IntSliderView","continuous_update":true,"description":"Corner Radius (px):","description_tooltip":null,"disabled":false,"layout":"IPY_MODEL_8e5d1c0c35544bb8ac3a0d6dfbfd3285","max":200,"min":0,"orientation":"horizontal","readout":true,"readout_format":"d","step":1,"style":"IPY_MODEL_24d6ac75fd28425e8cd9acdbf920b043","value":30}},"8e5d1c0c35544bb8ac3a0d6dfbfd3285":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}}}}},"nbformat":4,"nbformat_minor":0}