File size: 13,152 Bytes
42eb8fd 9a34adb 83ee281 9a34adb 42eb8fd 83ee281 27f7350 9a34adb 27f7350 9a34adb 27f7350 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
---
language:
- eng
pretty_name: "LiTraj"
tags:
- uMLIPs
- chemistry
- DFT
- GNN
- structure-to-property
license: "mit"
---

### LiTraj: A Dataset for Benchmarking Machine Learning Models for Predicting Lithium Ion Migration
[](https://github.com/AIRI-Institute/LiTraj)
[](https://colab.research.google.com/drive/1vkF8doorp58hKE0a_W2kVOAMWHPGOjzd#sandboxMode=true&scrollTo=s1TnrzPzoyDb)

This repository contains links to datasets for benchmarking machine learning models for predicting Li-ion migration, as described in our paper ["Benchmarking machine learning models for predicting lithium ion migration"](https://www.nature.com/articles/s41524-025-01571-z), along with the description of Python utilities for handling the datasets.
## Contents
- [About](#about)
- [Source links](#available-datasets-and-source-links)
- [Python tools](#installation)
- [Datasets in detail](#datasets-in-detail)
- [nebDFT2k](#nebdft2k-dataset)
- [MPLiTrj](#mplitrj-dataset)
- [BVEL13k](#bvel13k-dataset)
- [nebBVSE122k](#nebbvse122k-dataset)
- [Notebooks](#notebooks)
- [Citation](#how-to-cite)
## About
Modern electrochemical devices like Li-ion batteries require materials with fast ion transport. While traditional quantum chemistry methods for predicting ion mobility are computationally intensive, machine learning offers a faster alternative but depends on high-quality data. We introduce the LiTraj dataset, which provides 13,000 percolation barriers, 122,000 migration barriers, and 1,700 migration trajectories β key metrics for evaluating Li-ion mobility in crystals.
The datasets are calculated using density functional theory (DFT) and bond valence site energy (BVSE) methods. For the calculations, we used crystal structures collected from [the Materials Project database](https://next-gen.materialsproject.org/) (see [license](https://creativecommons.org/licenses/by/4.0/)). The data is stored in the extended .xyz format, which can be read by the [Atomistic Simulation Environment](https://wiki.fysik.dtu.dk/ase/) (ASE) Python library.
## Available datasets and source links
We provide training, validation, and test data splits for each dataset. See the [Python Tools](#python-tools) and [Datasets in Detail](#datasets-in-detail) sections to learn how to work with the datasets.
<table style="font-size: 12px;">
<tr>
<th>Dataset</th>
<th>Theory level</th>
<th>Specs</th>
<th>File</th>
<th>Size</th>
</tr>
<tr>
<td><a href="#nebdft2k-dataset">nebDFT2k</a></td>
<td>DFT(PBE)</td>
<td>target: migration barrier, geometry <br/> # of samples: 1,681</td>
<td><a href="https://bs3u.obs.ru-moscow-1.hc.sbercloud.ru/litraj/nebDFT2k.zip">zip</a> (65 MB)</td>
<td>0.7 GB</td>
</tr>
<tr>
<td><a href="#nebdft2k-dataset">nebDFT2k_U</a></td>
<td>DFT(PBE+U)</td>
<td>target: migration barrier, geometry <br/> # of samples: in progress</td>
<td>in progress</td>
<td></td>
</tr>
<tr>
<td><a href="#mplitrj-dataset">MPLiTrj</a></td>
<td>DFT(PBE)</td>
<td>target: energy, forces, stress tensor <br/> # of samples: 929,066</td>
<td><a href="https://bs3u.obs.ru-moscow-1.hc.sbercloud.ru/litraj/MPLiTrj.zip">zip</a> (3.8 GB)</td>
<td>16 GB</td>
</tr>
<tr>
<td><a href="#mplitrj-dataset">MPLiTrj_subsample</a></td>
<td>DFT(PBE)</td>
<td>target: energy, forces, stress tensor <br/> # of samples: 118,024</td>
<td><a href="https://bs3u.obs.ru-moscow-1.hc.sbercloud.ru/litraj/MPLiTrj_subsample.zip">zip</a> (0.5 GB)</td>
<td>2.1 GB</td>
</tr>
<tr>
<td><a href="#bvel13k-dataset">BVEL13k</a></td>
<td>BVSE</td>
<td>target: 1-3D percolation barrier <br/> # of samples: 12,807</td>
<td><a href="https://bs3u.obs.ru-moscow-1.hc.sbercloud.ru/litraj/BVEL13k.zip">zip</a> (11 MB)</td>
<td>35 MB</td>
</tr>
<tr>
<td><a href="#nebbvse122k-dataset">nebBVSE122k</a></td>
<td>BVSE</td>
<td>target: migration barrier <br/> # of samples: 122,421</td>
<td><a href="https://bs3u.obs.ru-moscow-1.hc.sbercloud.ru/litraj/nebBVSE122k.zip">zip</a> (0.2 GB)</td>
<td>0.9 GB</td>
</tr>
</table>
## Python tools
### Installation
```
pip install litraj
```
or
```python
git clone https://github.com/AIRI-Institute/LiTraj
cd LiTraj
pip install .
```
### Download a specific dataset
```python
from litraj.data import download_dataset
download_dataset('BVEL13k', '.', unzip = True) # save to the current directory and unzip
```
### Read the downloaded dataset
```python
from litraj.data import load_data
train, val, text, index = load_data('BVEL13k', '.')
for atoms in train:
mp_id = atoms.info['material_id']
e1d = atoms.info['E_1D']
e2d = atoms.info['E_2D']
e3d = atoms.info['E_3D']
# do stuff
pass
```
For more details see [Datasets basics](notebooks/datasets.ipynb) in the [notebooks](#notebooks)
## Datasets in detail
### nebDFT2k dataset

The nebDFT2k dataset includes Li-ion migration trajectories and corresponding **migration barriers** for 1,681 vacancy hops between initial and final equilibrium sites. The trajectories are optimized using the climbing image nudged elastic band (NEB) method with DFT for force and energy calculations. Initial trajectories were generated via linear interpolation between start and end positions, followed by preconditioning using the BVSE-NEB method from the [ions](https://github.com/dembart/ions) library.
For benchmarking universal machine learning interatomic potentials (uMLIPs), the BVSE-NEB optimized initial trajectories serve as the starting point for uMLIP-NEB optimization. The resulting trajectories are compared to the DFT ground truth. See an [example](notebooks/nebDFT2k_benchmark_MACE_MP_small.ipynb) to learn how to benchmark the pre-trained [MACE_MP](https://github.com/ACEsuit/mace-mp) model.
As an input for graph neural network (GNN) models for structure-to-property prediction of Li-ion migration barriers, we use the supercells with a centroid, marked as 'X' chemical element, added between the starting and final positions of the migrating ion.
**Structure of the nebDFT2k dataset**
nebDFT2k/
βββ nebDFT2k_index.csv # Table with material_id, edge_id, chemsys, _split, .., columns
βββ edge-id1_init.xyz # Initial (BVSE-NEB optimized) trajectory file, edge_id1 = mp-id1_source_target_offsetx_offsety_offsetz
βββ edge-id1_relaxed.xyz # Final (DFT-NEB optimized) trajectory file
βββ ...
βββ nebDFT2k_centroids.xyz # File with centroid supercells
**Usage example**
```python
from litraj.data import download_dataset, load_data
# download the dataset to the selected folder
download_dataset('nebDFT2k', 'path/to/save/data')
# read the dataset from the folder
data = load_data('nebDFT2k', 'path/to/save/data')
data_train = data[data._split == 'train']
for atoms in data_train.centroid:
edge_id = atoms.info['edge_id']
mp_id = atoms.info['material_id']
em = atoms.info['em']
# do stuff
for traj_init, traj_relaxed in zip(data.trajectory_init, data.trajectory_relaxed):
# do stuff
pass
```
### MPLiTrj dataset
The MPLiTrj dataset contains 929,066 configurations with calculated energies, forces and stress tensors obtained during the DFT-NEB optimization of 2,698 Li-ion migration pathways. Its subsample comprises 118,024 configurations. Each dataset has three .xyz files corresponding to the training, validation, and test data splits.
**Structure of the MPLiTrj dataset**
MPLiTraj/
βββ MPLiTrj_train.xyz # Training file
βββ MPLiTrj_val.xyz # Validation file
βββ MPLiTrj_test.xyz # Test file
**Usage example**
```python
from litraj.data import download_dataset, load_data
# download the dataset to the selected folder
download_dataset('MPLiTrj_subsample', 'path/to/save/data')
train, val, test = load_data('MPLiTrj_subsample', 'path/to/save/data')
structures, energies, forces, stresses = [], [], [], []
for atoms in train:
structures.append(atoms)
energies.append(atoms.calc.get_potential_energy())
forces.append(atoms.calc.get_forces().tolist())
stresses.append(atoms.calc.get_stress().tolist())
```
### BVEL13k dataset

The BVEL13k dataset contains Li-ion 1-3D percolation barriers calculated for 12,807 Li-containing ionic crystal structures. The percolation barriers are calculated using BVEL method as implemented in the [BVlain](https://github.com/dembart/BVlain) python package. There are 73 chemical elements (species), each structure contains at most 160 atoms and has a unit cell volume smaller than 1500 Γ
<sup>3</sup>.
**Structure of the BVEL13k dataset**
BVEL13k/
βββ BVEL13k_index.csv # Table with material_id, chemsys, _split, E_1D, E_2D, E_3D columns
βββ BVEL13k_train.xyz # Training file
βββ BVEL13k_val.xyz # Validation file
βββ BVEL13k_test.xyz # Test file
**Usage example**
```python
from litraj.data import download_dataset, load_data
# download the dataset to the selected folder
download_dataset('BVEL13k', 'path/to/save/data')
# get train, val, test split of the dataset and the index dataframe
atoms_list_train, atoms_list_val, atoms_list_test, index = load_data('BVEL13k', 'path/to/save/data')
# the data is stored in the Ase's Atoms object
for atoms in atoms_list_train:
mp_id = atoms.info['material_id']
e1d = atoms.info['E_1D']
e2d = atoms.info['E_2D']
e3d = atoms.info['E_3D']
# do stuff
```
### nebBVSE122k dataset

The nebBVSE122k dataset contains Li-ion migration barriers calculated for 122,421 Li-ion vacancy hops from its starting to final equilibrium positions. The migration barriers are calculated using the NEB method employing BVSE approach as implemented in the [ions](https://github.com/dembart/ions) python package.
As an input for GNN models for structure-to-property prediction, we use the supercells with a centroid, marked as 'X' chemical element, added between the starting and final positions of the migrating ion.
**Structure of the nebBVSE122k dataset**
nebBVSE122k/
βββ nebBVSE122k_index.csv # Table with material_id, chemsys, _split, em columns
βββ nebBVSE122k_train.xyz # Training file
βββ nebBVSE122k_val.xyz # Validation file
βββ nebBVSE122k_test.xyz # Test file
**Usage example**
```python
from litraj.data import download_dataset, load_data
# download the dataset to the selected folder
download_dataset('nebBVSE122k', 'path/to/save/data')
# get train, val, test split of the dataset and the index dataframe
atoms_list_train, atoms_list_val, atoms_list_test, index = load_data('nebBVSE122k', 'path/to/save/data')
for atoms_with_centroid in atoms_list_train:
edge_id = atoms_with_centroid.info['edge_id'] # mp-id_source_target_offsetx_offsety_offsetz
mp_id = atoms_with_centroid.info['material_id']
em = atoms_with_centroid.info['em']
centroid_index = np.argwhere(atoms_with_centroid.symbols =='X')
# do stuff
```
### Notebooks
- [Datasets basics](https://github.com/AIRI-Institute/LiTraj/tree/main/notebooks/datasets.ipynb)
- [Benchmarking uMLIPs on nebDFT2k](notebooks/nebDFT2k_benchmark_MACE_MP_small.ipynb)
- [M3GNet training on centroids from nebDFT2k](https://github.com/AIRI-Institute/LiTraj/tree/main/notebooks/m3gnet_nebDFT2k_centroids.ipynb)
- [Allegro training on BVEL13k](https://github.com/AIRI-Institute/LiTraj/tree/main/notebooks/allegro_BVEL13k.ipynb)
- [BVEL calculations](https://github.com/AIRI-Institute/LiTraj/tree/main/notebooks/bvel.ipynb)
- [BVSE-NEB calculations](https://github.com/AIRI-Institute/LiTraj/tree/main/notebooks/bvse_neb.ipynb)
- [Featurizers](https://github.com/AIRI-Institute/LiTraj/tree/main/notebooks/featurizers.ipynb)
### How to cite
If you use the LiTraj dataset, please, consider citing our paper
```
@article{dembitskiy2025benchmarking,
title = {{Benchmarking machine learning models for predicting lithium ion migration}},
author = {Dembitskiy, Artem D. and Humonen, Innokentiy S. and Eremin, Roman A. and Aksyonov, Dmitry A. and Fedotov, Stanislav S. and Budennyy, Semen A.},
journal = {npj Comput. Mater.},
volume = {11},
number = {131},
year = {2025},
publisher = {Nature Publishing Group},
doi = {10.1038/s41524-025-01571-z}
}
```
|