Upload 2 files
Browse files- README.md +82 -3
- dataset_card.json +1 -0
README.md
CHANGED
|
@@ -1,3 +1,82 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# EvHumanMotion
|
| 2 |
+
|
| 3 |
+
[Dataset on HuggingFace π€](https://huggingface.co/datasets/potentialming/EvHumanMotion)
|
| 4 |
+
|
| 5 |
+
**EvHumanMotion** is a real-world dataset captured using the DAVIS346 event camera, focusing on human motion under diverse and challenging scenarios. It is designed to support event-driven human animation research, especially under motion blur, low-light, and overexposure conditions. This dataset was introduced in the [EvAnimate](https://arxiv.org/abs/2503.18552) paper.
|
| 6 |
+
|
| 7 |
+
## Dataset Structure
|
| 8 |
+
|
| 9 |
+
The dataset is organized into two main parts:
|
| 10 |
+
|
| 11 |
+
- **EvHumanMotion_aedat4**: Raw event streams in `.aedat4` format.
|
| 12 |
+
- **EvHumanMotion_frame**: Frame-level event slices and RGB frames.
|
| 13 |
+
|
| 14 |
+
Each is categorized into:
|
| 15 |
+
- `indoor_day/`
|
| 16 |
+
- `indoor_night_high_noise/`
|
| 17 |
+
- `indoor_night_low_noise/`
|
| 18 |
+
- `outdoor_day/`
|
| 19 |
+
- `outdoor_night/`
|
| 20 |
+
|
| 21 |
+
Each environment contains four scenarios:
|
| 22 |
+
- `low_light/`
|
| 23 |
+
- `motion_blur/`
|
| 24 |
+
- `normal/`
|
| 25 |
+
- `over_exposure/`
|
| 26 |
+
|
| 27 |
+
Example path:
|
| 28 |
+
|
| 29 |
+
```
|
| 30 |
+
EvHumanMotion_frame/indoor_day/low_light/dvSave-2025_03_04_13_02_53/
|
| 31 |
+
βββ event_frames/
|
| 32 |
+
β βββ events_0000013494.png
|
| 33 |
+
β βββ ...
|
| 34 |
+
βββ frames/
|
| 35 |
+
βββ frames_1741064573617350.png
|
| 36 |
+
βββ ...
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
## Features
|
| 40 |
+
|
| 41 |
+
- **Total sequences**: 113
|
| 42 |
+
- **Participants**: 20 (10 male, 10 female)
|
| 43 |
+
- **Duration**: ~10 seconds per video
|
| 44 |
+
- **Frame rate**: 24 fps
|
| 45 |
+
- **Scenarios**: Normal, Motion Blur, Overexposure, Low Light
|
| 46 |
+
- **Modalities**: RGB + Event data (both `.aedat4` and frame-level)
|
| 47 |
+
|
| 48 |
+
## Applications
|
| 49 |
+
|
| 50 |
+
This dataset supports:
|
| 51 |
+
- Event-to-video generation
|
| 52 |
+
- Human animation in extreme conditions
|
| 53 |
+
- Motion transfer with high temporal resolution
|
| 54 |
+
|
| 55 |
+
## Usage
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
from datasets import load_dataset
|
| 59 |
+
|
| 60 |
+
dataset = load_dataset("potentialming/EvHumanMotion")
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## License
|
| 64 |
+
|
| 65 |
+
Apache 2.0 License
|
| 66 |
+
|
| 67 |
+
## Citation
|
| 68 |
+
|
| 69 |
+
If you use this dataset, please cite:
|
| 70 |
+
|
| 71 |
+
```bibtex
|
| 72 |
+
@article{qu2025evanimate,
|
| 73 |
+
title={EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation},
|
| 74 |
+
author={Qu, Qiang and Li, Ming and Chen, Xiaoming and Liu, Tongliang},
|
| 75 |
+
journal={arXiv preprint arXiv:2503.18552},
|
| 76 |
+
year={2025}
|
| 77 |
+
}
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
## Contact
|
| 81 |
+
|
| 82 |
+
Dataset maintained by [Ming Li](https://huggingface.co/potentialming).
|
dataset_card.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{'dataset_name': 'EvHumanMotion', 'pretty_name': 'EvHumanMotion', 'license': 'apache-2.0', 'language': ['en'], 'multilinguality': 'no', 'size_categories': ['10K<n<100K'], 'source_datasets': None, 'task_categories': ['video-to-video', 'event-to-video', 'human motion generation'], 'tags': ['event camera', 'video generation', 'human animation', 'motion transfer', 'real-world', 'low-light', 'motion-blur', 'diffusion'], 'dataset_info': {'features': {'event_stream': '.aedat4 format event file', 'event_frames': 'Sliced event frames in .png format', 'video_frames': 'RGB frame sequence', 'scenario': 'One of [normal, motion_blur, over_exposure, low_light]', 'environment': 'One of [indoor_day, indoor_night_high_noise, indoor_night_low_noise, outdoor_day, outdoor_night]'}, 'splits': {'train': 'custom split recommended', 'validation': 'custom split recommended', 'test': 'custom split recommended'}}, 'description': 'EvHumanMotion is a real-world dataset captured using DAVIS346 event camera, containing 113 sequences of human motion under various scenarios including motion blur, low light, and overexposure. It is designed for event-driven video generation and motion understanding. Each sequence includes RGB frames and aligned event data, in both .aedat4 and frame-level formats.', 'homepage': 'https://huggingface.co/datasets/potentialming/EvHumanMotion', 'citation': '@article{qu2025evanimate,\n title={EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation},\n author={Qu, Qiang and Li, Ming and Chen, Xiaoming and Liu, Tongliang},\n journal={arXiv preprint arXiv:2503.18552},\n year={2025}\n}'}
|