|
|
|
|
|
from pathlib import Path |
|
|
import sys |
|
|
sys.path.append(str(Path.cwd() / "annotation")) |
|
|
|
|
|
import json |
|
|
import os |
|
|
import argparse |
|
|
from sklearn.model_selection import train_test_split |
|
|
from datatypes import VideoAnnotation, Metadata |
|
|
from annotate import dump_json |
|
|
from utils import get_metadata, filter_video |
|
|
from typing import List |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
|
prog = 'train_test.py', |
|
|
description='Annotate video dataset with JSON format' |
|
|
) |
|
|
parser.add_argument( |
|
|
'--folders', |
|
|
type = str, |
|
|
nargs = '+', |
|
|
required = True, |
|
|
help = "List of folder paths to video data" |
|
|
) |
|
|
parser.add_argument( |
|
|
'--train_size', |
|
|
type=float, |
|
|
default=0.8, |
|
|
help='Proportion of the dataset for training' |
|
|
) |
|
|
parser.add_argument( |
|
|
'--output_train_file', |
|
|
type=str, |
|
|
default='data/EnTube_train.json', |
|
|
help='Output JSON file for training' |
|
|
) |
|
|
parser.add_argument( |
|
|
'--output_test_file', |
|
|
type=str, |
|
|
default='data/EnTube_test.json', |
|
|
help='Output JSON file for testing' |
|
|
) |
|
|
parser.add_argument( |
|
|
'--max_duration', |
|
|
type=int, |
|
|
help='Maximum duration of video in seconds' |
|
|
) |
|
|
parser.add_argument( |
|
|
'--random_state', |
|
|
type=int, |
|
|
default=42, |
|
|
help='Random seed for train-test split' |
|
|
) |
|
|
args = parser.parse_args() |
|
|
|
|
|
folder_paths: List[str] = args.folders |
|
|
metadata: Metadata = get_metadata(folder_paths) |
|
|
|
|
|
metadata_label = {0: [], 1: [], 2: []} |
|
|
for video, label in metadata: |
|
|
metadata_label[int(label)].append((video, label)) |
|
|
train = [] |
|
|
test = [] |
|
|
for label, videos in metadata_label.items(): |
|
|
train_l, test_l = train_test_split( |
|
|
videos, |
|
|
train_size=args.train_size, |
|
|
random_state=args.random_state |
|
|
) |
|
|
print(f'Label {label}: {len(train_l)} training videos, {len(test_l)} testing videos') |
|
|
train.extend(train_l) |
|
|
test.extend(test_l) |
|
|
|
|
|
json_train: List[VideoAnnotation] = dump_json(train, filter_video, **vars(args)) |
|
|
json_test: List[VideoAnnotation] = dump_json(test, filter_video, **vars(args)) |
|
|
|
|
|
with open(args.output_train_file, 'w') as f: |
|
|
json.dump(json_train, f, indent=4) |
|
|
print(f"Training data saved to {args.output_train_file}") |
|
|
with open(args.output_test_file, 'w') as f: |
|
|
json.dump(json_test, f, indent=4) |
|
|
print(f"Testing data saved to {args.output_test_file}") |