Commit
·
ce61544
1
Parent(s):
e2896c4
Add vLLM classification script
Browse files- Add classify-dataset.py for batch text classification
- Support for BERT-style models via vLLM
- Automatic label mapping from model config
- GPU availability check
- Comprehensive README with HFJobs examples
- Development notes in CLAUDE.md
- .gitignore +6 -0
- CLAUDE.md +55 -0
- README.md +110 -0
- classify-dataset.py +286 -0
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.DS_Store
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.pyc
|
| 4 |
+
.ruff_cache/
|
| 5 |
+
.venv/
|
| 6 |
+
*.log
|
CLAUDE.md
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# vLLM Scripts Development Notes
|
| 2 |
+
|
| 3 |
+
## Repository Purpose
|
| 4 |
+
This repository contains UV scripts for vLLM-based inference tasks. Focus on GPU-accelerated inference using vLLM's optimized engine.
|
| 5 |
+
|
| 6 |
+
## Key Patterns
|
| 7 |
+
|
| 8 |
+
### 1. GPU Requirements
|
| 9 |
+
All scripts MUST check for GPU availability:
|
| 10 |
+
```python
|
| 11 |
+
if not torch.cuda.is_available():
|
| 12 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 13 |
+
sys.exit(1)
|
| 14 |
+
```
|
| 15 |
+
|
| 16 |
+
### 2. vLLM Docker Image
|
| 17 |
+
Always use `vllm/vllm-openai:latest` for HF Jobs - it has all dependencies pre-installed.
|
| 18 |
+
|
| 19 |
+
### 3. Dependencies
|
| 20 |
+
Include custom PyPI indexes for vLLM and FlashInfer:
|
| 21 |
+
```python
|
| 22 |
+
# [[tool.uv.index]]
|
| 23 |
+
# url = "https://flashinfer.ai/whl/cu126/torch2.6"
|
| 24 |
+
#
|
| 25 |
+
# [[tool.uv.index]]
|
| 26 |
+
# url = "https://wheels.vllm.ai/nightly"
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
## Current Scripts
|
| 30 |
+
|
| 31 |
+
1. **classify-dataset.py**: BERT-style text classification
|
| 32 |
+
- Uses vLLM's classify task
|
| 33 |
+
- Supports batch processing with configurable size
|
| 34 |
+
- Automatically extracts label mappings from model config
|
| 35 |
+
|
| 36 |
+
## Future Scripts
|
| 37 |
+
|
| 38 |
+
Potential additions:
|
| 39 |
+
- Text generation with vLLM
|
| 40 |
+
- Embedding generation using sentence transformers
|
| 41 |
+
- Multi-modal inference
|
| 42 |
+
- Structured output generation
|
| 43 |
+
|
| 44 |
+
## Testing
|
| 45 |
+
|
| 46 |
+
Local testing requires GPU. For scripts without local GPU access:
|
| 47 |
+
1. Use HF Jobs with small test datasets
|
| 48 |
+
2. Verify script runs without syntax errors: `python -m py_compile script.py`
|
| 49 |
+
3. Check dependencies resolve: `uv pip compile`
|
| 50 |
+
|
| 51 |
+
## Performance Considerations
|
| 52 |
+
|
| 53 |
+
- Default batch size: 10,000 for local, up to 100,000 for HF Jobs
|
| 54 |
+
- L4 GPUs are cost-effective for classification
|
| 55 |
+
- Monitor GPU memory usage and adjust batch sizes accordingly
|
README.md
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
viewer: false
|
| 3 |
+
tags: [uv-script, vllm, gpu, inference]
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# vLLM Inference Scripts
|
| 7 |
+
|
| 8 |
+
Ready-to-run scripts for GPU-accelerated inference using [vLLM](https://github.com/vllm-project/vllm).
|
| 9 |
+
|
| 10 |
+
## 📋 Available Scripts
|
| 11 |
+
|
| 12 |
+
### classify-dataset.py
|
| 13 |
+
|
| 14 |
+
Batch text classification using BERT-style models with vLLM's optimized inference engine.
|
| 15 |
+
|
| 16 |
+
**Features:**
|
| 17 |
+
- 🚀 High-throughput batch processing
|
| 18 |
+
- 🏷️ Automatic label mapping from model config
|
| 19 |
+
- 📊 Confidence scores for predictions
|
| 20 |
+
- 🤗 Direct integration with Hugging Face Hub
|
| 21 |
+
|
| 22 |
+
**Usage:**
|
| 23 |
+
```bash
|
| 24 |
+
# Local execution (requires GPU)
|
| 25 |
+
uv run classify-dataset.py \
|
| 26 |
+
davanstrien/ModernBERT-base-is-new-arxiv-dataset \
|
| 27 |
+
username/input-dataset \
|
| 28 |
+
username/output-dataset \
|
| 29 |
+
--inference-column text \
|
| 30 |
+
--batch-size 10000
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
**HF Jobs execution:**
|
| 34 |
+
```bash
|
| 35 |
+
hfjobs run \
|
| 36 |
+
--flavor l4x1 \
|
| 37 |
+
--secret HF_TOKEN=$(python -c "from huggingface_hub import HfFolder; print(HfFolder.get_token())") \
|
| 38 |
+
vllm/vllm-openai:latest \
|
| 39 |
+
/bin/bash -c '
|
| 40 |
+
uv run https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \
|
| 41 |
+
davanstrien/ModernBERT-base-is-new-arxiv-dataset \
|
| 42 |
+
username/input-dataset \
|
| 43 |
+
username/output-dataset \
|
| 44 |
+
--inference-column text \
|
| 45 |
+
--batch-size 100000
|
| 46 |
+
' \
|
| 47 |
+
--project vllm-classify \
|
| 48 |
+
--name my-classification-job
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
## 🎯 Requirements
|
| 52 |
+
|
| 53 |
+
All scripts in this collection require:
|
| 54 |
+
- **NVIDIA GPU** with CUDA support
|
| 55 |
+
- **Python 3.10+**
|
| 56 |
+
- **UV package manager** (auto-installed via script)
|
| 57 |
+
|
| 58 |
+
## 🚀 Performance Tips
|
| 59 |
+
|
| 60 |
+
### GPU Selection
|
| 61 |
+
- **L4 GPU** (`--flavor l4x1`): Best value for classification tasks
|
| 62 |
+
- **A10 GPU** (`--flavor a10`): Higher memory for larger models
|
| 63 |
+
- Adjust batch size based on GPU memory
|
| 64 |
+
|
| 65 |
+
### Batch Sizes
|
| 66 |
+
- **Local GPUs**: Start with 10,000 and adjust based on memory
|
| 67 |
+
- **HF Jobs**: Can use larger batches (50,000-100,000) with cloud GPUs
|
| 68 |
+
|
| 69 |
+
## 📚 About vLLM
|
| 70 |
+
|
| 71 |
+
vLLM is a high-throughput inference engine optimized for:
|
| 72 |
+
- Fast model serving with PagedAttention
|
| 73 |
+
- Efficient batch processing
|
| 74 |
+
- Support for various model architectures
|
| 75 |
+
- Seamless integration with Hugging Face models
|
| 76 |
+
|
| 77 |
+
## 🔧 Technical Details
|
| 78 |
+
|
| 79 |
+
### Dependencies
|
| 80 |
+
Scripts use vLLM's nightly builds and FlashInfer for optimal performance:
|
| 81 |
+
```python
|
| 82 |
+
# [[tool.uv.index]]
|
| 83 |
+
# url = "https://flashinfer.ai/whl/cu126/torch2.6"
|
| 84 |
+
#
|
| 85 |
+
# [[tool.uv.index]]
|
| 86 |
+
# url = "https://wheels.vllm.ai/nightly"
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
### Docker Image
|
| 90 |
+
For HF Jobs, we use the official vLLM Docker image: `vllm/vllm-openai:latest`
|
| 91 |
+
|
| 92 |
+
This image includes:
|
| 93 |
+
- Pre-installed CUDA libraries
|
| 94 |
+
- vLLM and all dependencies
|
| 95 |
+
- UV package manager
|
| 96 |
+
- Optimized for GPU inference
|
| 97 |
+
|
| 98 |
+
## 📝 Contributing
|
| 99 |
+
|
| 100 |
+
Have a vLLM script to share? We welcome contributions that:
|
| 101 |
+
- Solve real inference problems
|
| 102 |
+
- Include clear documentation
|
| 103 |
+
- Follow UV script best practices
|
| 104 |
+
- Include HF Jobs examples
|
| 105 |
+
|
| 106 |
+
## 🔗 Resources
|
| 107 |
+
|
| 108 |
+
- [vLLM Documentation](https://docs.vllm.ai/)
|
| 109 |
+
- [HF Jobs Guide](https://huggingface.co/docs/hub/spaces-gpu-jobs)
|
| 110 |
+
- [UV Scripts Organization](https://huggingface.co/uv-scripts)
|
classify-dataset.py
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "datasets",
|
| 5 |
+
# "flashinfer-python",
|
| 6 |
+
# "httpx",
|
| 7 |
+
# "huggingface-hub[hf_transfer]",
|
| 8 |
+
# "setuptools",
|
| 9 |
+
# "toolz",
|
| 10 |
+
# "torch",
|
| 11 |
+
# "transformers",
|
| 12 |
+
# "vllm",
|
| 13 |
+
# ]
|
| 14 |
+
#
|
| 15 |
+
# [[tool.uv.index]]
|
| 16 |
+
# url = "https://flashinfer.ai/whl/cu126/torch2.6"
|
| 17 |
+
#
|
| 18 |
+
# [[tool.uv.index]]
|
| 19 |
+
# url = "https://wheels.vllm.ai/nightly"
|
| 20 |
+
# ///
|
| 21 |
+
"""
|
| 22 |
+
Batch text classification using vLLM for efficient GPU inference.
|
| 23 |
+
|
| 24 |
+
This script loads a dataset from Hugging Face Hub, performs classification using
|
| 25 |
+
a BERT-style model via vLLM, and saves the results back to the Hub with predicted
|
| 26 |
+
labels and confidence scores.
|
| 27 |
+
|
| 28 |
+
Example usage:
|
| 29 |
+
# Local execution
|
| 30 |
+
uv run classify-dataset.py \\
|
| 31 |
+
davanstrien/ModernBERT-base-is-new-arxiv-dataset \\
|
| 32 |
+
username/input-dataset \\
|
| 33 |
+
username/output-dataset \\
|
| 34 |
+
--inference-column text \\
|
| 35 |
+
--batch-size 10000
|
| 36 |
+
|
| 37 |
+
# HF Jobs execution (see script output for full command)
|
| 38 |
+
hfjobs run --flavor l4x1 ...
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
import argparse
|
| 42 |
+
import logging
|
| 43 |
+
import os
|
| 44 |
+
import sys
|
| 45 |
+
from typing import Optional
|
| 46 |
+
|
| 47 |
+
import httpx
|
| 48 |
+
import torch
|
| 49 |
+
import torch.nn.functional as F
|
| 50 |
+
import vllm
|
| 51 |
+
from datasets import load_dataset
|
| 52 |
+
from huggingface_hub import hf_hub_url, login
|
| 53 |
+
from toolz import concat, keymap, partition_all
|
| 54 |
+
from tqdm.auto import tqdm
|
| 55 |
+
from vllm import LLM
|
| 56 |
+
|
| 57 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 58 |
+
logger = logging.getLogger(__name__)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def check_gpu_availability():
|
| 62 |
+
"""Check if CUDA is available and log GPU information."""
|
| 63 |
+
if not torch.cuda.is_available():
|
| 64 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 65 |
+
logger.error("Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor.")
|
| 66 |
+
sys.exit(1)
|
| 67 |
+
|
| 68 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 69 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
| 70 |
+
logger.info(f"GPU detected: {gpu_name} with {gpu_memory:.1f} GB memory")
|
| 71 |
+
logger.info(f"vLLM version: {vllm.__version__}")
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def get_model_id2label(hub_model_id: str) -> Optional[dict[int, str]]:
|
| 75 |
+
"""Extract label mapping from model's config.json on Hugging Face Hub."""
|
| 76 |
+
try:
|
| 77 |
+
response = httpx.get(
|
| 78 |
+
hf_hub_url(hub_model_id, filename="config.json"),
|
| 79 |
+
follow_redirects=True
|
| 80 |
+
)
|
| 81 |
+
if response.status_code != 200:
|
| 82 |
+
logger.warning(f"Could not fetch config.json for {hub_model_id}")
|
| 83 |
+
return None
|
| 84 |
+
|
| 85 |
+
data = response.json()
|
| 86 |
+
id2label = data.get("id2label")
|
| 87 |
+
|
| 88 |
+
if id2label is None:
|
| 89 |
+
logger.info("No id2label mapping found in config.json")
|
| 90 |
+
return None
|
| 91 |
+
|
| 92 |
+
# Convert string keys to integers
|
| 93 |
+
label_map = keymap(int, id2label)
|
| 94 |
+
logger.info(f"Found label mapping: {label_map}")
|
| 95 |
+
return label_map
|
| 96 |
+
|
| 97 |
+
except Exception as e:
|
| 98 |
+
logger.warning(f"Failed to parse config.json: {e}")
|
| 99 |
+
return None
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_top_label(output, label_map: Optional[dict[int, str]] = None):
|
| 103 |
+
"""
|
| 104 |
+
Extract the top predicted label and confidence score from vLLM output.
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
output: vLLM ClassificationRequestOutput
|
| 108 |
+
label_map: Optional mapping from label indices to label names
|
| 109 |
+
|
| 110 |
+
Returns:
|
| 111 |
+
Tuple of (label, confidence_score)
|
| 112 |
+
"""
|
| 113 |
+
logits = torch.tensor(output.outputs.probs)
|
| 114 |
+
probs = F.softmax(logits, dim=0)
|
| 115 |
+
top_idx = torch.argmax(probs).item()
|
| 116 |
+
top_prob = probs[top_idx].item()
|
| 117 |
+
|
| 118 |
+
# Use label name if mapping available, otherwise use index
|
| 119 |
+
label = label_map.get(top_idx, str(top_idx)) if label_map else str(top_idx)
|
| 120 |
+
return label, top_prob
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def main(
|
| 124 |
+
hub_model_id: str,
|
| 125 |
+
src_dataset_hub_id: str,
|
| 126 |
+
output_dataset_hub_id: str,
|
| 127 |
+
inference_column: str = "text",
|
| 128 |
+
batch_size: int = 10_000,
|
| 129 |
+
hf_token: Optional[str] = None,
|
| 130 |
+
):
|
| 131 |
+
"""
|
| 132 |
+
Main classification pipeline.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
hub_model_id: Hugging Face model ID for classification
|
| 136 |
+
src_dataset_hub_id: Input dataset on Hugging Face Hub
|
| 137 |
+
output_dataset_hub_id: Where to save results on Hugging Face Hub
|
| 138 |
+
inference_column: Column name containing text to classify
|
| 139 |
+
batch_size: Number of examples to process at once
|
| 140 |
+
hf_token: Hugging Face authentication token
|
| 141 |
+
"""
|
| 142 |
+
# GPU check
|
| 143 |
+
check_gpu_availability()
|
| 144 |
+
|
| 145 |
+
# Authentication
|
| 146 |
+
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
| 147 |
+
if HF_TOKEN:
|
| 148 |
+
login(token=HF_TOKEN)
|
| 149 |
+
else:
|
| 150 |
+
logger.error("HF_TOKEN is required. Set via --hf-token or HF_TOKEN environment variable.")
|
| 151 |
+
sys.exit(1)
|
| 152 |
+
|
| 153 |
+
# Initialize vLLM with classification task
|
| 154 |
+
logger.info(f"Loading model: {hub_model_id}")
|
| 155 |
+
llm = LLM(model=hub_model_id, task="classify")
|
| 156 |
+
|
| 157 |
+
# Get label mapping if available
|
| 158 |
+
id2label = get_model_id2label(hub_model_id)
|
| 159 |
+
|
| 160 |
+
# Load dataset
|
| 161 |
+
logger.info(f"Loading dataset: {src_dataset_hub_id}")
|
| 162 |
+
dataset = load_dataset(src_dataset_hub_id, split="train")
|
| 163 |
+
total_examples = len(dataset)
|
| 164 |
+
logger.info(f"Dataset loaded with {total_examples:,} examples")
|
| 165 |
+
|
| 166 |
+
# Extract text column
|
| 167 |
+
if inference_column not in dataset.column_names:
|
| 168 |
+
logger.error(f"Column '{inference_column}' not found. Available columns: {dataset.column_names}")
|
| 169 |
+
sys.exit(1)
|
| 170 |
+
|
| 171 |
+
prompts = dataset[inference_column]
|
| 172 |
+
|
| 173 |
+
# Process in batches
|
| 174 |
+
logger.info(f"Starting classification with batch size {batch_size:,}")
|
| 175 |
+
all_results = []
|
| 176 |
+
|
| 177 |
+
for batch in tqdm(
|
| 178 |
+
list(partition_all(batch_size, prompts)),
|
| 179 |
+
desc="Processing batches",
|
| 180 |
+
unit="batch"
|
| 181 |
+
):
|
| 182 |
+
batch_results = llm.classify(batch)
|
| 183 |
+
all_results.append(batch_results)
|
| 184 |
+
|
| 185 |
+
# Flatten results
|
| 186 |
+
outputs = list(concat(all_results))
|
| 187 |
+
|
| 188 |
+
# Extract labels and probabilities
|
| 189 |
+
logger.info("Extracting predictions...")
|
| 190 |
+
labels_and_probs = [get_top_label(output, id2label) for output in outputs]
|
| 191 |
+
|
| 192 |
+
# Add results to dataset
|
| 193 |
+
dataset = dataset.add_column("label", [label for label, _ in labels_and_probs])
|
| 194 |
+
dataset = dataset.add_column("prob", [prob for _, prob in labels_and_probs])
|
| 195 |
+
|
| 196 |
+
# Push to hub
|
| 197 |
+
logger.info(f"Pushing results to: {output_dataset_hub_id}")
|
| 198 |
+
dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
|
| 199 |
+
logger.info("✅ Classification complete!")
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
if __name__ == "__main__":
|
| 203 |
+
if len(sys.argv) > 1:
|
| 204 |
+
parser = argparse.ArgumentParser(
|
| 205 |
+
description="Classify text data using vLLM and save results to Hugging Face Hub",
|
| 206 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 207 |
+
epilog="""
|
| 208 |
+
Examples:
|
| 209 |
+
# Basic usage
|
| 210 |
+
uv run classify-dataset.py model/name input-dataset output-dataset
|
| 211 |
+
|
| 212 |
+
# With custom column and batch size
|
| 213 |
+
uv run classify-dataset.py model/name input-dataset output-dataset \\
|
| 214 |
+
--inference-column prompt \\
|
| 215 |
+
--batch-size 50000
|
| 216 |
+
|
| 217 |
+
# Using environment variable for token
|
| 218 |
+
HF_TOKEN=hf_xxx uv run classify-dataset.py model/name input-dataset output-dataset
|
| 219 |
+
"""
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
parser.add_argument(
|
| 223 |
+
"hub_model_id",
|
| 224 |
+
help="Hugging Face model ID for classification (e.g., bert-base-uncased)"
|
| 225 |
+
)
|
| 226 |
+
parser.add_argument(
|
| 227 |
+
"src_dataset_hub_id",
|
| 228 |
+
help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)"
|
| 229 |
+
)
|
| 230 |
+
parser.add_argument(
|
| 231 |
+
"output_dataset_hub_id",
|
| 232 |
+
help="Output dataset name on Hugging Face Hub"
|
| 233 |
+
)
|
| 234 |
+
parser.add_argument(
|
| 235 |
+
"--inference-column",
|
| 236 |
+
type=str,
|
| 237 |
+
default="text",
|
| 238 |
+
help="Column containing text to classify (default: text)"
|
| 239 |
+
)
|
| 240 |
+
parser.add_argument(
|
| 241 |
+
"--batch-size",
|
| 242 |
+
type=int,
|
| 243 |
+
default=10_000,
|
| 244 |
+
help="Batch size for inference (default: 10,000)"
|
| 245 |
+
)
|
| 246 |
+
parser.add_argument(
|
| 247 |
+
"--hf-token",
|
| 248 |
+
type=str,
|
| 249 |
+
help="Hugging Face token (can also use HF_TOKEN env var)"
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
args = parser.parse_args()
|
| 253 |
+
|
| 254 |
+
main(
|
| 255 |
+
hub_model_id=args.hub_model_id,
|
| 256 |
+
src_dataset_hub_id=args.src_dataset_hub_id,
|
| 257 |
+
output_dataset_hub_id=args.output_dataset_hub_id,
|
| 258 |
+
inference_column=args.inference_column,
|
| 259 |
+
batch_size=args.batch_size,
|
| 260 |
+
hf_token=args.hf_token,
|
| 261 |
+
)
|
| 262 |
+
else:
|
| 263 |
+
# Show HF Jobs example when run without arguments
|
| 264 |
+
print("""
|
| 265 |
+
vLLM Classification Script
|
| 266 |
+
=========================
|
| 267 |
+
|
| 268 |
+
This script requires arguments. For usage information:
|
| 269 |
+
uv run classify-dataset.py --help
|
| 270 |
+
|
| 271 |
+
Example HF Jobs command:
|
| 272 |
+
hfjobs run \\
|
| 273 |
+
--flavor l4x1 \\
|
| 274 |
+
--secret HF_TOKEN=\$(python -c "from huggingface_hub import HfFolder; print(HfFolder.get_token())") \\
|
| 275 |
+
vllm/vllm-openai:latest \\
|
| 276 |
+
/bin/bash -c '
|
| 277 |
+
uv run https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \\
|
| 278 |
+
davanstrien/ModernBERT-base-is-new-arxiv-dataset \\
|
| 279 |
+
username/input-dataset \\
|
| 280 |
+
username/output-dataset \\
|
| 281 |
+
--inference-column text \\
|
| 282 |
+
--batch-size 100000
|
| 283 |
+
' \\
|
| 284 |
+
--project vllm-classify \\
|
| 285 |
+
--name my-classification-job
|
| 286 |
+
""")
|