Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
nbroad commited on
Commit
bb01487
·
1 Parent(s): 2ae7253

Detailed ReadMe

Browse files
Files changed (1) hide show
  1. README.md +71 -3
README.md CHANGED
@@ -10,8 +10,76 @@ source_datasets:
10
  - original
11
  task_categories:
12
  - summarization
13
- paperswithcode_id: cnn-daily-mail-1
14
  ---
15
 
16
- [Not my dataset - see here: <https://github.com/morningmoni/CiteSum>]
17
- [WIP]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - original
11
  task_categories:
12
  - summarization
13
+ paperswithcode_id: citesum
14
  ---
15
 
16
+ (I did not make this dataset - I just made the loader for datasets)
17
+
18
+ # CiteSum
19
+
20
+ ## Description
21
+
22
+ CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation.
23
+
24
+ CiteSum contains TLDR summaries for scientific papers from their citation texts without human annotation, making it around 30 times larger than the previous human-curated dataset SciTLDR.
25
+ ## Homepage
26
+ https://github.com/morningmoni/CiteSum
27
+
28
+ ## Paper
29
+ https://arxiv.org/abs/2205.06207
30
+
31
+ ## Authors
32
+
33
+ ### Yuning Mao, Ming Zhong, Jiawei Han
34
+ #### University of Illinois Urbana-Champaign
35
+ {yuningm2, mingz5, hanj}@illinois.edu
36
+
37
+
38
+ ## Dataset size
39
+
40
+ Train: 83304
41
+ Validation: 4721
42
+ Test: 4921
43
+
44
+ ## Data details
45
+
46
+ - src (string): source text. long description of paper
47
+ - tgt (string): target text. tldr of paper
48
+ - paper_id (string): unique id for the paper
49
+ - title (string): title of the paper
50
+ - discipline (dict):
51
+ - venue (string): Where the paper was published (conference)
52
+ - journal (string): Journal in which the paper was published
53
+ - mag_field_of_study (list[str]): scientific fields that the paper falls under.
54
+
55
+ Example:
56
+
57
+ ```
58
+ {
59
+ 'src': 'We describe a convolutional neural network that learns feature representations for short textual posts using hashtags as a supervised signal. The proposed approach is trained on up to 5.5 billion words predicting 100,000 possible hashtags. As well as strong performance on the hashtag prediction task itself, we show that its learned representation of text (ignoring the hashtag labels) is useful for other tasks as well. To that end, we present results on a document recommendation task, where it also outperforms a number of baselines.',
60
+
61
+ 'tgt': 'A convolutional neural network model for predicting hashtags was proposed in REF .',
62
+
63
+ 'paper_id': '14697143',
64
+
65
+ 'title': '#TagSpace: Semantic Embeddings from Hashtags',
66
+
67
+ 'discipline': {
68
+ 'venue': 'EMNLP',
69
+ 'journal': None,
70
+ 'mag_field_of_study': ['Computer Science']
71
+ }
72
+ }
73
+ ```
74
+
75
+
76
+ ## Using the dataset
77
+
78
+ ```python
79
+ from datasets import load_dataset
80
+
81
+ ds = load_dataset("nbroad/citesum")
82
+ ```
83
+
84
+ ## Data location
85
+ https://drive.google.com/file/d/1ndHCREXGSPnDUNllladh9qCtayqbXAfJ/view