Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
pipeline_tag: text-generation
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
- he
|
| 7 |
+
tags:
|
| 8 |
+
- pretrained
|
| 9 |
+
inference:
|
| 10 |
+
parameters:
|
| 11 |
+
temperature: 0.6
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
[<img src="https://i.ibb.co/5Lbwyr1/dicta-logo.jpg" width="300px"/>](https://dicta.org.il)
|
| 15 |
+
|
| 16 |
+
# Dicta-LM 3.0: Advancing The Frontier of Hebrew Sovereign LLMs
|
| 17 |
+
|
| 18 |
+
Dicta-LM 3.0 is a powerful open-weight collection of LLMs, trained on extensive corpora of Hebrew and English texts. The models are available for download and for unlimited use. The models set a new SOTA for their weight-class for Hebrew, both as base models and chat models.
|
| 19 |
+
|
| 20 |
+
This is our flagship model, a 24-billion-parameter *reasoning* model, with full precision (BF16), originally initialized from [Mistral-Small-3.1-24B-Base-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503).
|
| 21 |
+
|
| 22 |
+
This model is a reasoning chat model, which means that before responding to any given message from the user, the model first thinks out the right way to respond in a designated thinking block.
|
| 23 |
+
|
| 24 |
+
<br/>
|
| 25 |
+
|
| 26 |
+
🚀 Try it out here: [chat.dicta.org.il](https://chat.dicta.org.il)
|
| 27 |
+
|
| 28 |
+
<br/>
|
| 29 |
+
|
| 30 |
+
For full details of this model please read our [release blog post](https://dicta.org.il/dicta-lm-3) or the [technical report](https://www.dicta.org.il/publications/DictaLM_3_0___Techincal_Report.pdf).
|
| 31 |
+
|
| 32 |
+
You can view and access the full collection of base/instruct unquantized/quantized versions of `DictaLM 3.0` [here](https://huggingface.co/collections/dicta-il/dictalm-30-collection).
|
| 33 |
+
|
| 34 |
+
## Instruction format
|
| 35 |
+
|
| 36 |
+
In order to leverage instruction fine-tuning, your prompt should be rendered using the chat template specified for this model. Most libraries deal with this automatically, so you can just let them do it.
|
| 37 |
+
|
| 38 |
+
## Usage
|
| 39 |
+
|
| 40 |
+
We recommend using vLLM, but you can use Transformers as well:
|
| 41 |
+
|
| 42 |
+
### Transformers
|
| 43 |
+
|
| 44 |
+
```python
|
| 45 |
+
|
| 46 |
+
from transformers import pipeline
|
| 47 |
+
|
| 48 |
+
generator = pipeline('text-generation', model="dicta-il/DictaLM-3.0-24B-Thinking")
|
| 49 |
+
|
| 50 |
+
messages = [
|
| 51 |
+
{"role": "user", "content": "איזה רוטב אהוב עליך?"},
|
| 52 |
+
{"role": "assistant", "content": "טוב, אני די מחבב כמה טיפות מיץ לימון סחוט טרי. זה מוסיף בדיוק את הכמות הנכונה של טעם חמצמץ לכל מה שאני מבשל במטבח!"},
|
| 53 |
+
{"role": "user", "content": "האם יש לך מתכונים למיונז?"}
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
print(generator(messages)[0]['generated_text'][-1]) # just print the last message
|
| 57 |
+
#
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
### vLLM
|
| 61 |
+
|
| 62 |
+
```bash
|
| 63 |
+
vllm serve dicta-il/DictaLM-3.0-24B-Thinking --enable-auto-tool-choice --tool-call-parser hermes --reasoning_parser deepseek_r1
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
And then you can access it via the openai library:
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
from openai import OpenAI
|
| 70 |
+
|
| 71 |
+
client = OpenAI(
|
| 72 |
+
base_url="http://localhost:8000/v1",
|
| 73 |
+
api_key="sk-no-key-required"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
response = client.chat.completions.create(
|
| 77 |
+
model="dicta-il/DictaLM-3.0-24B-Thinking",
|
| 78 |
+
messages=[
|
| 79 |
+
{"role": "user", "content": "Hello, how are you?"}
|
| 80 |
+
],
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
print(response.choices[0].message.content)
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
> The reasoning traces should be available in the response structure in the designated fild.
|
| 87 |
+
|
| 88 |
+
The model supports tool-calling, enabling integration with external tools and APIs. For example how to use the tool calling, see the [vLLM documentation](https://docs.vllm.ai/en/stable/features/tool_calling/#tool-calling).
|
| 89 |
+
|
| 90 |
+
## Citation
|
| 91 |
+
|
| 92 |
+
If you use this model, please cite:
|
| 93 |
+
|
| 94 |
+
```bibtex
|
| 95 |
+
@article{Shmidman2025DictaLM3,
|
| 96 |
+
title={{Dicta-LM 3.0: Advancing The Frontier of Hebrew Sovereign LLMs}},
|
| 97 |
+
author={Shaltiel Shmidman and Avi Shmidman and Amir DN Cohen and Moshe Koppel},
|
| 98 |
+
year={2025},
|
| 99 |
+
publisher={{DICTA / Jerusalem, Israel}},
|
| 100 |
+
note={https://www.dicta.org.il/publications/DictaLM_3_0___Techincal_Report.pdf}
|
| 101 |
+
}
|
| 102 |
+
```
|