Shaltiel commited on
Commit
609e62e
·
verified ·
1 Parent(s): 61f8d89

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -0
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ language:
5
+ - en
6
+ - he
7
+ tags:
8
+ - pretrained
9
+ inference:
10
+ parameters:
11
+ temperature: 0.6
12
+ ---
13
+
14
+ [<img src="https://i.ibb.co/5Lbwyr1/dicta-logo.jpg" width="300px"/>](https://dicta.org.il)
15
+
16
+ # Dicta-LM 3.0: Advancing The Frontier of Hebrew Sovereign LLMs
17
+
18
+ Dicta-LM 3.0 is a powerful open-weight collection of LLMs, trained on extensive corpora of Hebrew and English texts. The models are available for download and for unlimited use. The models set a new SOTA for their weight-class for Hebrew, both as base models and chat models.
19
+
20
+ This is our flagship model, a 24-billion-parameter *reasoning* model, with full precision (BF16), originally initialized from [Mistral-Small-3.1-24B-Base-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503).
21
+
22
+ This model is a reasoning chat model, which means that before responding to any given message from the user, the model first thinks out the right way to respond in a designated thinking block.
23
+
24
+ <br/>
25
+
26
+ &#128640; Try it out here: [chat.dicta.org.il](https://chat.dicta.org.il)
27
+
28
+ <br/>
29
+
30
+ For full details of this model please read our [release blog post](https://dicta.org.il/dicta-lm-3) or the [technical report](https://www.dicta.org.il/publications/DictaLM_3_0___Techincal_Report.pdf).
31
+
32
+ You can view and access the full collection of base/instruct unquantized/quantized versions of `DictaLM 3.0` [here](https://huggingface.co/collections/dicta-il/dictalm-30-collection).
33
+
34
+ ## Instruction format
35
+
36
+ In order to leverage instruction fine-tuning, your prompt should be rendered using the chat template specified for this model. Most libraries deal with this automatically, so you can just let them do it.
37
+
38
+ ## Usage
39
+
40
+ We recommend using vLLM, but you can use Transformers as well:
41
+
42
+ ### Transformers
43
+
44
+ ```python
45
+
46
+ from transformers import pipeline
47
+
48
+ generator = pipeline('text-generation', model="dicta-il/DictaLM-3.0-24B-Thinking")
49
+
50
+ messages = [
51
+ {"role": "user", "content": "איזה רוטב אהוב עליך?"},
52
+ {"role": "assistant", "content": "טוב, אני די מחבב כמה טיפות מיץ לימון סחוט טרי. זה מוסיף בדיוק את הכמות הנכונה של טעם חמצמץ לכל מה שאני מבשל במטבח!"},
53
+ {"role": "user", "content": "האם יש לך מתכונים למיונז?"}
54
+ ]
55
+
56
+ print(generator(messages)[0]['generated_text'][-1]) # just print the last message
57
+ #
58
+ ```
59
+
60
+ ### vLLM
61
+
62
+ ```bash
63
+ vllm serve dicta-il/DictaLM-3.0-24B-Thinking --enable-auto-tool-choice --tool-call-parser hermes --reasoning_parser deepseek_r1
64
+ ```
65
+
66
+ And then you can access it via the openai library:
67
+
68
+ ```python
69
+ from openai import OpenAI
70
+
71
+ client = OpenAI(
72
+ base_url="http://localhost:8000/v1",
73
+ api_key="sk-no-key-required"
74
+ )
75
+
76
+ response = client.chat.completions.create(
77
+ model="dicta-il/DictaLM-3.0-24B-Thinking",
78
+ messages=[
79
+ {"role": "user", "content": "Hello, how are you?"}
80
+ ],
81
+ )
82
+
83
+ print(response.choices[0].message.content)
84
+ ```
85
+
86
+ > The reasoning traces should be available in the response structure in the designated fild.
87
+
88
+ The model supports tool-calling, enabling integration with external tools and APIs. For example how to use the tool calling, see the [vLLM documentation](https://docs.vllm.ai/en/stable/features/tool_calling/#tool-calling).
89
+
90
+ ## Citation
91
+
92
+ If you use this model, please cite:
93
+
94
+ ```bibtex
95
+ @article{Shmidman2025DictaLM3,
96
+ title={{Dicta-LM 3.0: Advancing The Frontier of Hebrew Sovereign LLMs}},
97
+ author={Shaltiel Shmidman and Avi Shmidman and Amir DN Cohen and Moshe Koppel},
98
+ year={2025},
99
+ publisher={{DICTA / Jerusalem, Israel}},
100
+ note={https://www.dicta.org.il/publications/DictaLM_3_0___Techincal_Report.pdf}
101
+ }
102
+ ```