|
|
import numpy as np |
|
|
import torch |
|
|
import shutil |
|
|
import os |
|
|
import matplotlib.pyplot as plt |
|
|
import cv2 |
|
|
import json |
|
|
from PIL import Image |
|
|
import pickle |
|
|
from skimage.transform import resize |
|
|
|
|
|
def split_data(datasetname): |
|
|
dir_image = "./dataset_demo/datasetname/images" |
|
|
dir_label = "./dataset_demo/datasetname/labels" |
|
|
|
|
|
dir_image = dir_image.replace("datasetname", datasetname) |
|
|
dir_label = dir_label.replace("datasetname", datasetname) |
|
|
|
|
|
path = "./dataset_demo" |
|
|
filesplit = "./files_split" |
|
|
|
|
|
file_data = os.path.join(filesplit, datasetname+".json") |
|
|
path_data = os.path.join(path, datasetname) |
|
|
|
|
|
|
|
|
with open(file_data, 'r') as openfile: |
|
|
json_object = json.load(openfile) |
|
|
|
|
|
for typ in json_object.keys(): |
|
|
print(typ) |
|
|
file_type = json_object[typ] |
|
|
path_type = os.path.join(path_data, typ) |
|
|
if os.path.exists(path_type): |
|
|
shutil.rmtree(path_type) |
|
|
os.mkdir(path_type) |
|
|
|
|
|
for img in file_type: |
|
|
if not "labels" in typ: |
|
|
shutil.copy(os.path.join(dir_image, img), os.path.join(path_type, img.replace(" ", ""))) |
|
|
else: |
|
|
shutil.copy(os.path.join(dir_label, img), os.path.join(path_type, img.replace(" ", ""))) |
|
|
|
|
|
def save_fileLabel(datasetname): |
|
|
file_image = "./dataset_demo/datasetname/type" |
|
|
file_label = "./dataset_demo/datasetname/type_labels" |
|
|
path = "./dataset_demo/datasetname" |
|
|
|
|
|
|
|
|
|
|
|
B = ['train'] |
|
|
file_image = file_image.replace("datasetname", datasetname) |
|
|
file_label = file_label.replace("datasetname", datasetname) |
|
|
path = path.replace("datasetname", datasetname) |
|
|
with open(os.path.join(path, 'have_label.txt'), 'w') as F: |
|
|
for j in B: |
|
|
dir_label = file_label.replace("type", j) |
|
|
dir_train = file_image.replace("type", j) |
|
|
for i in os.listdir(dir_label): |
|
|
file = os.path.join(dir_label, i) |
|
|
img = np.array(Image.open(file)) |
|
|
img[img < 50] = 0 |
|
|
img[img > 200] = 1 |
|
|
values, counts = np.unique(img, return_counts = True) |
|
|
if (len(values) == 2): |
|
|
a = i.replace("_segmentation.png", ".jpg") |
|
|
F.write(os.path.join(dir_train, a)) |
|
|
F.write(" ") |
|
|
F.write(file) |
|
|
F.write(" ") |
|
|
F.write("[0, 1]") |
|
|
F.write("\n") |
|
|
|
|
|
with open(os.path.join(path, 'non_label.txt'), 'w') as F: |
|
|
for j in B: |
|
|
dir_label = file_label.replace("type", j) |
|
|
dir_train = file_image.replace("type", j) |
|
|
for i in os.listdir(dir_label): |
|
|
file = os.path.join(dir_label, i) |
|
|
img = np.array(Image.open(file)) |
|
|
img[img < 50] = 0 |
|
|
img[img > 200] = 1 |
|
|
values, counts = np.unique(img, return_counts = True) |
|
|
|
|
|
if (len(values) == 1): |
|
|
a = i.replace("_segmentation.png", ".jpg") |
|
|
F.write(os.path.join(dir_train, a)) |
|
|
F.write(" ") |
|
|
F.write(file) |
|
|
F.write(" ") |
|
|
F.write("[0]") |
|
|
F.write("\n") |
|
|
|
|
|
def save_fileLabel_3D(datasetname): |
|
|
file_image = "./dataset_demo/datasetname/type" |
|
|
file_label = "./dataset_demo/datasetname/type_labels" |
|
|
path = "./dataset_demo/datasetname" |
|
|
|
|
|
|
|
|
|
|
|
B = ['train'] |
|
|
file_image = file_image.replace("datasetname", datasetname) |
|
|
file_label = file_label.replace("datasetname", datasetname) |
|
|
path = path.replace("datasetname", datasetname) |
|
|
with open(os.path.join(path, 'have_label.txt'), 'w') as F: |
|
|
for j in B: |
|
|
dir_label = file_label.replace("type", j) |
|
|
dir_train = file_image.replace("type", j) |
|
|
for i in os.listdir(dir_label): |
|
|
file = os.path.join(dir_label, i) |
|
|
img = np.array(Image.open(file)) |
|
|
values, counts = np.unique(img, return_counts = True) |
|
|
if 60 in values: |
|
|
a = i.replace("label", "image") |
|
|
F.write(os.path.join(dir_train, a)) |
|
|
F.write(" ") |
|
|
F.write(file) |
|
|
F.write(" ") |
|
|
F.write("[0, 2]") |
|
|
F.write("\n") |
|
|
|
|
|
with open(os.path.join(path, 'non_label.txt'), 'w') as F: |
|
|
for j in B: |
|
|
dir_label = file_label.replace("type", j) |
|
|
dir_train = file_image.replace("type", j) |
|
|
for i in os.listdir(dir_label): |
|
|
file = os.path.join(dir_label, i) |
|
|
img = np.array(Image.open(file)) |
|
|
values, counts = np.unique(img, return_counts = True) |
|
|
|
|
|
if not 60 in values: |
|
|
a = i.replace("label", "image") |
|
|
F.write(os.path.join(dir_train, a)) |
|
|
F.write(" ") |
|
|
F.write(file) |
|
|
F.write(" ") |
|
|
F.write("[0]") |
|
|
F.write("\n") |