File size: 5,356 Bytes
afb9ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
license: cc0-1.0
base_model: mlx-community/Qwen2.5-Coder-7B-Instruct-4bit
tags:
- gguf
- cybersecurity
- nist
- security-controls
- compliance
- fine-tuned
- llama-cpp
language:
- en
quantized_by: ethanolivertroy
---

# HackIDLE-NIST-Coder v1.1 (GGUF)

**The most comprehensive NIST cybersecurity model** in GGUF format - Compatible with llama.cpp, Ollama, LM Studio, and text-generation-webui.

## Model Overview

Fine-tuned on 530,912 examples from 596 NIST publications. Version 1.1 includes:

- **+7,206 training examples** (530,912 total)
- **+28 new documents** (596 NIST publications)
- **CSWP series**: CSF 2.0, Zero Trust Architecture, Post-Quantum Cryptography
- **Improved quality**: Fixed 6,150 malformed DOI links, 0 broken link markers

## Available Quantizations

| Quantization | Size | Use Case | Description |
|--------------|------|----------|-------------|
| **F16** | ~14 GB | Reference Quality | Full precision, best quality |
| **Q8_0** | ~7.5 GB | High Quality | Minimal quality loss |
| **Q5_K_M** | ~5.1 GB | Balanced | Good quality/size trade-off |
| **Q4_K_M** | ~4.4 GB | Recommended | Best speed/quality balance |

**Recommended**: Start with **Q4_K_M** for best overall performance.

## Training Data (v1.1)

**Dataset**: [ethanolivertroy/nist-cybersecurity-training](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training)

**Coverage:**
- **FIPS**: Cryptographic standards
- **SP 800**: Security guidelines and controls
- **SP 1800**: Practice guides
- **IR**: Technical reports
- **CSWP**: White Papers (CSF 2.0, Zero Trust, PQC, IoT, Privacy) ✨ NEW

**Stats**: 530,912 examples β€’ 596 documents β€’ 61,480 working references

## Installation

### Ollama

```bash
# Pull from Ollama registry
ollama pull etgohome/hackidle-nist-coder:v1.1

# Or create from GGUF
ollama create hackidle-nist-coder -f Modelfile
```

### LM Studio

1. Open LM Studio
2. Search for "hackidle-nist-coder"
3. Download Q4_K_M or Q5_K_M quantization
4. Load and chat

### llama.cpp

```bash
# Clone llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp && make

# Download model (Q4_K_M recommended)
wget https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF/resolve/main/hackidle-nist-coder-v1.1-q4_k_m.gguf

# Run inference
./llama-cli -m hackidle-nist-coder-v1.1-q4_k_m.gguf -p "What is Zero Trust Architecture?"
```

### text-generation-webui

1. Place GGUF file in `models/` directory
2. Select model in UI
3. Load and chat

## Usage Examples

### Ollama

```bash
ollama run etgohome/hackidle-nist-coder:v1.1 "Explain the CSF 2.0 GOVERN function"
```

### Python (llama-cpp-python)

```python
from llama_cpp import Llama

llm = Llama(
    model_path="hackidle-nist-coder-v1.1-q4_k_m.gguf",
    n_ctx=4096,
    n_threads=8
)

response = llm("What are the core principles of Zero Trust Architecture in SP 800-207?",
               max_tokens=500)
print(response['choices'][0]['text'])
```

## Model Capabilities

Trained on comprehensive NIST content:

βœ… **Security Controls** (SP 800-53)
βœ… **CSF 2.0** with GOVERN function
βœ… **Zero Trust Architecture** (SP 800-207)
βœ… **Risk Management Framework** (RMF)
βœ… **Cloud Security** (SP 800-145, 800-146)
βœ… **FIPS Cryptography** standards
βœ… **Post-Quantum Cryptography** migration
βœ… **Privacy Engineering**
βœ… **Supply Chain Risk Management**
βœ… **IoT Cybersecurity**

## What's New in v1.1

**Added Content:**
- CSF 2.0 (Cybersecurity Framework 2.0)
- Zero Trust Architecture planning guidance
- Post-Quantum Cryptography recommendations
- IoT security and labeling
- Privacy Framework v1.0
- Supply chain risk management case studies

**Quality Improvements:**
- Fixed 6,150 malformed DOI links
- Removed 202 broken link markers
- Validated 124,946 total links
- Clean training data

## System Requirements

| Quantization | RAM Required | CPU/GPU |
|--------------|-------------|---------|
| Q4_K_M | 6 GB | CPU or GPU |
| Q5_K_M | 7 GB | CPU or GPU |
| Q8_0 | 10 GB | CPU or GPU |
| F16 | 16 GB | GPU recommended |

## Other Formats

- **MLX**: [ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit](https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit) (Apple Silicon)
- **Ollama**: [etgohome/hackidle-nist-coder](https://ollama.com/etgohome/hackidle-nist-coder)

## Limitations

- Training data current as of October 2025
- May not reflect NIST publications released after training
- 54.2% of references are broken links (cataloged for recovery)
- Optimized for NIST-specific cybersecurity questions

## Citation

```bibtex
@misc{hackidle-nist-coder-v1.1-gguf,
  title={HackIDLE-NIST-Coder: NIST Cybersecurity Expert Model},
  author={Troy, Ethan Oliver},
  year={2025},
  version={1.1},
  format={GGUF},
  url={https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF}
}
```

## License

CC0 1.0 Universal (Public Domain) - All NIST publications are in the public domain.

## Acknowledgments

- NIST Computer Security Resource Center
- Qwen2.5-Coder base model (Alibaba Cloud)
- llama.cpp quantization (Georgi Gerganov)
- MLX framework (Apple)

---

**Version**: 1.1
**Release Date**: October 2025
**Training Dataset**: [nist-cybersecurity-training v1.1](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training)
**Format**: GGUF (compatible with llama.cpp ecosystem)