File size: 5,356 Bytes
afb9ff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
license: cc0-1.0
base_model: mlx-community/Qwen2.5-Coder-7B-Instruct-4bit
tags:
- gguf
- cybersecurity
- nist
- security-controls
- compliance
- fine-tuned
- llama-cpp
language:
- en
quantized_by: ethanolivertroy
---
# HackIDLE-NIST-Coder v1.1 (GGUF)
**The most comprehensive NIST cybersecurity model** in GGUF format - Compatible with llama.cpp, Ollama, LM Studio, and text-generation-webui.
## Model Overview
Fine-tuned on 530,912 examples from 596 NIST publications. Version 1.1 includes:
- **+7,206 training examples** (530,912 total)
- **+28 new documents** (596 NIST publications)
- **CSWP series**: CSF 2.0, Zero Trust Architecture, Post-Quantum Cryptography
- **Improved quality**: Fixed 6,150 malformed DOI links, 0 broken link markers
## Available Quantizations
| Quantization | Size | Use Case | Description |
|--------------|------|----------|-------------|
| **F16** | ~14 GB | Reference Quality | Full precision, best quality |
| **Q8_0** | ~7.5 GB | High Quality | Minimal quality loss |
| **Q5_K_M** | ~5.1 GB | Balanced | Good quality/size trade-off |
| **Q4_K_M** | ~4.4 GB | Recommended | Best speed/quality balance |
**Recommended**: Start with **Q4_K_M** for best overall performance.
## Training Data (v1.1)
**Dataset**: [ethanolivertroy/nist-cybersecurity-training](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training)
**Coverage:**
- **FIPS**: Cryptographic standards
- **SP 800**: Security guidelines and controls
- **SP 1800**: Practice guides
- **IR**: Technical reports
- **CSWP**: White Papers (CSF 2.0, Zero Trust, PQC, IoT, Privacy) β¨ NEW
**Stats**: 530,912 examples β’ 596 documents β’ 61,480 working references
## Installation
### Ollama
```bash
# Pull from Ollama registry
ollama pull etgohome/hackidle-nist-coder:v1.1
# Or create from GGUF
ollama create hackidle-nist-coder -f Modelfile
```
### LM Studio
1. Open LM Studio
2. Search for "hackidle-nist-coder"
3. Download Q4_K_M or Q5_K_M quantization
4. Load and chat
### llama.cpp
```bash
# Clone llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp && make
# Download model (Q4_K_M recommended)
wget https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF/resolve/main/hackidle-nist-coder-v1.1-q4_k_m.gguf
# Run inference
./llama-cli -m hackidle-nist-coder-v1.1-q4_k_m.gguf -p "What is Zero Trust Architecture?"
```
### text-generation-webui
1. Place GGUF file in `models/` directory
2. Select model in UI
3. Load and chat
## Usage Examples
### Ollama
```bash
ollama run etgohome/hackidle-nist-coder:v1.1 "Explain the CSF 2.0 GOVERN function"
```
### Python (llama-cpp-python)
```python
from llama_cpp import Llama
llm = Llama(
model_path="hackidle-nist-coder-v1.1-q4_k_m.gguf",
n_ctx=4096,
n_threads=8
)
response = llm("What are the core principles of Zero Trust Architecture in SP 800-207?",
max_tokens=500)
print(response['choices'][0]['text'])
```
## Model Capabilities
Trained on comprehensive NIST content:
β
**Security Controls** (SP 800-53)
β
**CSF 2.0** with GOVERN function
β
**Zero Trust Architecture** (SP 800-207)
β
**Risk Management Framework** (RMF)
β
**Cloud Security** (SP 800-145, 800-146)
β
**FIPS Cryptography** standards
β
**Post-Quantum Cryptography** migration
β
**Privacy Engineering**
β
**Supply Chain Risk Management**
β
**IoT Cybersecurity**
## What's New in v1.1
**Added Content:**
- CSF 2.0 (Cybersecurity Framework 2.0)
- Zero Trust Architecture planning guidance
- Post-Quantum Cryptography recommendations
- IoT security and labeling
- Privacy Framework v1.0
- Supply chain risk management case studies
**Quality Improvements:**
- Fixed 6,150 malformed DOI links
- Removed 202 broken link markers
- Validated 124,946 total links
- Clean training data
## System Requirements
| Quantization | RAM Required | CPU/GPU |
|--------------|-------------|---------|
| Q4_K_M | 6 GB | CPU or GPU |
| Q5_K_M | 7 GB | CPU or GPU |
| Q8_0 | 10 GB | CPU or GPU |
| F16 | 16 GB | GPU recommended |
## Other Formats
- **MLX**: [ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit](https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit) (Apple Silicon)
- **Ollama**: [etgohome/hackidle-nist-coder](https://ollama.com/etgohome/hackidle-nist-coder)
## Limitations
- Training data current as of October 2025
- May not reflect NIST publications released after training
- 54.2% of references are broken links (cataloged for recovery)
- Optimized for NIST-specific cybersecurity questions
## Citation
```bibtex
@misc{hackidle-nist-coder-v1.1-gguf,
title={HackIDLE-NIST-Coder: NIST Cybersecurity Expert Model},
author={Troy, Ethan Oliver},
year={2025},
version={1.1},
format={GGUF},
url={https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF}
}
```
## License
CC0 1.0 Universal (Public Domain) - All NIST publications are in the public domain.
## Acknowledgments
- NIST Computer Security Resource Center
- Qwen2.5-Coder base model (Alibaba Cloud)
- llama.cpp quantization (Georgi Gerganov)
- MLX framework (Apple)
---
**Version**: 1.1
**Release Date**: October 2025
**Training Dataset**: [nist-cybersecurity-training v1.1](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training)
**Format**: GGUF (compatible with llama.cpp ecosystem)
|