--- license: cc0-1.0 base_model: mlx-community/Qwen2.5-Coder-7B-Instruct-4bit tags: - gguf - cybersecurity - nist - security-controls - compliance - fine-tuned - llama-cpp language: - en quantized_by: ethanolivertroy --- # HackIDLE-NIST-Coder v1.1 (GGUF) **The most comprehensive NIST cybersecurity model** in GGUF format - Compatible with llama.cpp, Ollama, LM Studio, and text-generation-webui. ## Model Overview Fine-tuned on 530,912 examples from 596 NIST publications. Version 1.1 includes: - **+7,206 training examples** (530,912 total) - **+28 new documents** (596 NIST publications) - **CSWP series**: CSF 2.0, Zero Trust Architecture, Post-Quantum Cryptography - **Improved quality**: Fixed 6,150 malformed DOI links, 0 broken link markers ## Available Quantizations | Quantization | Size | Use Case | Description | |--------------|------|----------|-------------| | **F16** | ~14 GB | Reference Quality | Full precision, best quality | | **Q8_0** | ~7.5 GB | High Quality | Minimal quality loss | | **Q5_K_M** | ~5.1 GB | Balanced | Good quality/size trade-off | | **Q4_K_M** | ~4.4 GB | Recommended | Best speed/quality balance | **Recommended**: Start with **Q4_K_M** for best overall performance. ## Training Data (v1.1) **Dataset**: [ethanolivertroy/nist-cybersecurity-training](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training) **Coverage:** - **FIPS**: Cryptographic standards - **SP 800**: Security guidelines and controls - **SP 1800**: Practice guides - **IR**: Technical reports - **CSWP**: White Papers (CSF 2.0, Zero Trust, PQC, IoT, Privacy) ✨ NEW **Stats**: 530,912 examples • 596 documents • 61,480 working references ## Installation ### Ollama ```bash # Pull from Ollama registry ollama pull etgohome/hackidle-nist-coder:v1.1 # Or create from GGUF ollama create hackidle-nist-coder -f Modelfile ``` ### LM Studio 1. Open LM Studio 2. Search for "hackidle-nist-coder" 3. Download Q4_K_M or Q5_K_M quantization 4. Load and chat ### llama.cpp ```bash # Clone llama.cpp git clone https://github.com/ggerganov/llama.cpp cd llama.cpp && make # Download model (Q4_K_M recommended) wget https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF/resolve/main/hackidle-nist-coder-v1.1-q4_k_m.gguf # Run inference ./llama-cli -m hackidle-nist-coder-v1.1-q4_k_m.gguf -p "What is Zero Trust Architecture?" ``` ### text-generation-webui 1. Place GGUF file in `models/` directory 2. Select model in UI 3. Load and chat ## Usage Examples ### Ollama ```bash ollama run etgohome/hackidle-nist-coder:v1.1 "Explain the CSF 2.0 GOVERN function" ``` ### Python (llama-cpp-python) ```python from llama_cpp import Llama llm = Llama( model_path="hackidle-nist-coder-v1.1-q4_k_m.gguf", n_ctx=4096, n_threads=8 ) response = llm("What are the core principles of Zero Trust Architecture in SP 800-207?", max_tokens=500) print(response['choices'][0]['text']) ``` ## Model Capabilities Trained on comprehensive NIST content: ✅ **Security Controls** (SP 800-53) ✅ **CSF 2.0** with GOVERN function ✅ **Zero Trust Architecture** (SP 800-207) ✅ **Risk Management Framework** (RMF) ✅ **Cloud Security** (SP 800-145, 800-146) ✅ **FIPS Cryptography** standards ✅ **Post-Quantum Cryptography** migration ✅ **Privacy Engineering** ✅ **Supply Chain Risk Management** ✅ **IoT Cybersecurity** ## What's New in v1.1 **Added Content:** - CSF 2.0 (Cybersecurity Framework 2.0) - Zero Trust Architecture planning guidance - Post-Quantum Cryptography recommendations - IoT security and labeling - Privacy Framework v1.0 - Supply chain risk management case studies **Quality Improvements:** - Fixed 6,150 malformed DOI links - Removed 202 broken link markers - Validated 124,946 total links - Clean training data ## System Requirements | Quantization | RAM Required | CPU/GPU | |--------------|-------------|---------| | Q4_K_M | 6 GB | CPU or GPU | | Q5_K_M | 7 GB | CPU or GPU | | Q8_0 | 10 GB | CPU or GPU | | F16 | 16 GB | GPU recommended | ## Other Formats - **MLX**: [ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit](https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit) (Apple Silicon) - **Ollama**: [etgohome/hackidle-nist-coder](https://ollama.com/etgohome/hackidle-nist-coder) ## Limitations - Training data current as of October 2025 - May not reflect NIST publications released after training - 54.2% of references are broken links (cataloged for recovery) - Optimized for NIST-specific cybersecurity questions ## Citation ```bibtex @misc{hackidle-nist-coder-v1.1-gguf, title={HackIDLE-NIST-Coder: NIST Cybersecurity Expert Model}, author={Troy, Ethan Oliver}, year={2025}, version={1.1}, format={GGUF}, url={https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF} } ``` ## License CC0 1.0 Universal (Public Domain) - All NIST publications are in the public domain. ## Acknowledgments - NIST Computer Security Resource Center - Qwen2.5-Coder base model (Alibaba Cloud) - llama.cpp quantization (Georgi Gerganov) - MLX framework (Apple) --- **Version**: 1.1 **Release Date**: October 2025 **Training Dataset**: [nist-cybersecurity-training v1.1](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training) **Format**: GGUF (compatible with llama.cpp ecosystem)