update model card README.md
Browse files
README.md
CHANGED
|
@@ -4,6 +4,7 @@ tags:
|
|
| 4 |
- generated_from_trainer
|
| 5 |
metrics:
|
| 6 |
- accuracy
|
|
|
|
| 7 |
model-index:
|
| 8 |
- name: my_awesome_model
|
| 9 |
results: []
|
|
@@ -16,8 +17,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 16 |
|
| 17 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
| 18 |
It achieves the following results on the evaluation set:
|
| 19 |
-
- Loss: 0.
|
| 20 |
-
- Accuracy: 0.
|
|
|
|
| 21 |
|
| 22 |
## Model description
|
| 23 |
|
|
@@ -36,33 +38,38 @@ More information needed
|
|
| 36 |
### Training hyperparameters
|
| 37 |
|
| 38 |
The following hyperparameters were used during training:
|
| 39 |
-
- learning_rate: 1e-
|
| 40 |
- train_batch_size: 16
|
| 41 |
- eval_batch_size: 16
|
| 42 |
- seed: 42
|
| 43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 44 |
- lr_scheduler_type: linear
|
| 45 |
-
- num_epochs:
|
| 46 |
|
| 47 |
### Training results
|
| 48 |
|
| 49 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 50 |
-
|
| 51 |
-
| No log | 1.0 | 167 | 0.
|
| 52 |
-
| No log | 2.0 | 334 | 0.
|
| 53 |
-
| 0.
|
| 54 |
-
| 0.
|
| 55 |
-
| 0.
|
| 56 |
-
| 0.
|
| 57 |
-
| 0.
|
| 58 |
-
| 0.
|
| 59 |
-
| 0.
|
| 60 |
-
| 0.
|
| 61 |
-
| 0.
|
| 62 |
-
| 0.
|
| 63 |
-
| 0.
|
| 64 |
-
| 0.
|
| 65 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
|
| 68 |
### Framework versions
|
|
|
|
| 4 |
- generated_from_trainer
|
| 5 |
metrics:
|
| 6 |
- accuracy
|
| 7 |
+
- f1
|
| 8 |
model-index:
|
| 9 |
- name: my_awesome_model
|
| 10 |
results: []
|
|
|
|
| 17 |
|
| 18 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
| 19 |
It achieves the following results on the evaluation set:
|
| 20 |
+
- Loss: 0.3741
|
| 21 |
+
- Accuracy: 0.8411
|
| 22 |
+
- F1: 0.8015
|
| 23 |
|
| 24 |
## Model description
|
| 25 |
|
|
|
|
| 38 |
### Training hyperparameters
|
| 39 |
|
| 40 |
The following hyperparameters were used during training:
|
| 41 |
+
- learning_rate: 1e-06
|
| 42 |
- train_batch_size: 16
|
| 43 |
- eval_batch_size: 16
|
| 44 |
- seed: 42
|
| 45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 46 |
- lr_scheduler_type: linear
|
| 47 |
+
- num_epochs: 20
|
| 48 |
|
| 49 |
### Training results
|
| 50 |
|
| 51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
| 52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
| 53 |
+
| No log | 1.0 | 167 | 0.6611 | 0.6612 | 0.3722 |
|
| 54 |
+
| No log | 2.0 | 334 | 0.5848 | 0.7421 | 0.6325 |
|
| 55 |
+
| 0.6188 | 3.0 | 501 | 0.5176 | 0.7601 | 0.7080 |
|
| 56 |
+
| 0.6188 | 4.0 | 668 | 0.4783 | 0.7706 | 0.7193 |
|
| 57 |
+
| 0.6188 | 5.0 | 835 | 0.4566 | 0.7841 | 0.7273 |
|
| 58 |
+
| 0.455 | 6.0 | 1002 | 0.4415 | 0.7946 | 0.7360 |
|
| 59 |
+
| 0.455 | 7.0 | 1169 | 0.4250 | 0.8096 | 0.7703 |
|
| 60 |
+
| 0.455 | 8.0 | 1336 | 0.4146 | 0.8186 | 0.7713 |
|
| 61 |
+
| 0.3881 | 9.0 | 1503 | 0.4069 | 0.8261 | 0.7803 |
|
| 62 |
+
| 0.3881 | 10.0 | 1670 | 0.3968 | 0.8321 | 0.7926 |
|
| 63 |
+
| 0.3881 | 11.0 | 1837 | 0.3916 | 0.8351 | 0.7948 |
|
| 64 |
+
| 0.3493 | 12.0 | 2004 | 0.3865 | 0.8426 | 0.8037 |
|
| 65 |
+
| 0.3493 | 13.0 | 2171 | 0.3822 | 0.8426 | 0.8045 |
|
| 66 |
+
| 0.3493 | 14.0 | 2338 | 0.3802 | 0.8456 | 0.8068 |
|
| 67 |
+
| 0.3239 | 15.0 | 2505 | 0.3769 | 0.8471 | 0.8111 |
|
| 68 |
+
| 0.3239 | 16.0 | 2672 | 0.3756 | 0.8441 | 0.8060 |
|
| 69 |
+
| 0.3239 | 17.0 | 2839 | 0.3749 | 0.8411 | 0.8015 |
|
| 70 |
+
| 0.3104 | 18.0 | 3006 | 0.3742 | 0.8396 | 0.8000 |
|
| 71 |
+
| 0.3104 | 19.0 | 3173 | 0.3738 | 0.8396 | 0.8000 |
|
| 72 |
+
| 0.3104 | 20.0 | 3340 | 0.3741 | 0.8411 | 0.8015 |
|
| 73 |
|
| 74 |
|
| 75 |
### Framework versions
|