File size: 15,878 Bytes
00c497b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# ========================
# Train with NTP + MTP
# by gbyuvd
# ========================
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
import os
import math
from typing import List, Union, Optional, Tuple, Dict, Any
from transformers.tokenization_utils_base import BatchEncoding
from transformers import Qwen3Config, Qwen3ForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from transformers.models.qwen2.modeling_qwen2 import Qwen2PreTrainedModel
from datasets import load_dataset, DatasetDict
import pandas as pd
from torch.utils.data import Dataset, DataLoader, random_split
from sklearn.model_selection import train_test_split
from ranger21 import Ranger21
from tqdm.notebook import tqdm
from FastChemTokenizerHF import FastChemTokenizerSelfies
from ChemQ3MTP import ChemQ3MTP
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from transformers import TrainerCallback
import datetime
# ==============================
# Load external configuration
# ==============================
with open("config.json", "r") as f:
CONFIG = json.load(f)
TRAINING_CFG = CONFIG["training"]
MODEL_CFG = CONFIG["model"]
GENERATION_CFG = CONFIG.get("generation", {})
# Training params
BATCH_SIZE = TRAINING_CFG["batch_size"]
NUM_EPOCHS = TRAINING_CFG["num_epochs"]
LEARNING_RATE = TRAINING_CFG["learning_rate"]
WEIGHT_DECAY = TRAINING_CFG["weight_decay"]
GRAD_ACCUM_STEPS = TRAINING_CFG["gradient_accumulation_steps"]
TOKENIZE_BATCH_SIZE = TRAINING_CFG["tokenize_batch_size"]
TRAIN_SPLIT_RATIO = TRAINING_CFG["train_split_ratio"]
VAL_SPLIT_RATIO = TRAINING_CFG["val_split_ratio"]
TEST_SPLIT_RATIO = TRAINING_CFG["test_split_ratio"]
INCLUDE_FOR_METRICS = TRAINING_CFG.get("include_for_metrics", ["input_ids", "attention_mask", "labels"])
# ==============================
class LossLoggerCallback(TrainerCallback):
def __init__(self, log_file="training_losses.txt", with_timestamp=False):
self.log_file = log_file
self.with_timestamp = with_timestamp
with open(self.log_file, "w") as f:
if self.with_timestamp:
f.write("time\tstep\tloss\teval_loss\n")
else:
f.write("step\tloss\teval_loss\n")
def on_log(self, args, state, control, logs=None, **kwargs):
if logs is None:
return
step = state.global_step
loss = logs.get("loss")
eval_loss = logs.get("eval_loss")
with open(self.log_file, "a") as f:
if self.with_timestamp:
ts = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
f.write(f"{ts}\t{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")
else:
f.write(f"{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")
def main():
# --- Load the tokenizer ---
tokenizer = FastChemTokenizerSelfies.from_pretrained("./selftok_core")
out = tokenizer("[C] [=C] [Branch1]", return_tensors="pt")
print(out.input_ids)
print(out.attention_mask)
out = out.to("cuda" if torch.cuda.is_available() else "cpu")
print(out.input_ids.device)
# --- Define config ---
config = Qwen3Config(
vocab_size=len(tokenizer),
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
tie_word_embeddings=True,
use_cache=False,
**MODEL_CFG
)
model = ChemQ3MTP(config, num_future_tokens=3)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Enhanced model has {count_parameters(model):,} trainable parameters.")
batch_size, seq_len = 2, 32
dummy_input = torch.randint(
low=0,
high=len(tokenizer),
size=(batch_size, seq_len),
dtype=torch.long,
)
with torch.no_grad():
outputs = model(dummy_input)
logits = outputs.logits
print(f"Input shape: {dummy_input.shape}")
print(f"Logits shape: {logits.shape}")
print("Loading dataset...")
dataset = load_dataset(
'csv',
data_files='./data/sample_all_14k.csv',
split='train',
streaming=True
)
print("Shuffling and splitting dataset...")
shuffled_dataset = dataset.shuffle(seed=42, buffer_size=10000)
total_lines = 14000
test_size = int(TEST_SPLIT_RATIO * total_lines)
val_size = int(VAL_SPLIT_RATIO * total_lines)
train_size = total_lines - test_size - val_size
test_dataset = shuffled_dataset.take(test_size)
remaining = shuffled_dataset.skip(test_size)
val_dataset = remaining.take(val_size)
train_dataset = remaining.skip(val_size)
print(f"Dataset split: train={train_size}, val={val_size}, test={test_size}")
def tokenize_function(examples):
batch_results = {"input_ids": [], "attention_mask": [], "labels": []}
smiles_list = examples['SELFIES'] if isinstance(examples['SELFIES'], list) else [examples['SELFIES']]
for smiles in smiles_list:
tokenized = tokenizer(
smiles,
truncation=True,
padding=False,
max_length=MODEL_CFG["max_position_embeddings"],
return_tensors=None,
add_special_tokens=True
)
input_ids = tokenized["input_ids"]
attention_mask = tokenized["attention_mask"]
labels = input_ids.copy()
batch_results["input_ids"].append(input_ids)
batch_results["attention_mask"].append(attention_mask)
batch_results["labels"].append(labels)
return batch_results
print("Tokenizing datasets...")
train_dataset = train_dataset.map(tokenize_function, batched=True, batch_size=TOKENIZE_BATCH_SIZE, remove_columns=["SELFIES"])
val_dataset = val_dataset.map(tokenize_function, batched=True, batch_size=TOKENIZE_BATCH_SIZE, remove_columns=["SELFIES"])
class EnhancedDataCollator:
def __init__(self, tokenizer, pad_to_multiple_of=8):
self.tokenizer = tokenizer
self.pad_to_multiple_of = pad_to_multiple_of
def __call__(self, features):
max_length = max(len(f["input_ids"]) for f in features)
if self.pad_to_multiple_of:
max_length = ((max_length + self.pad_to_multiple_of - 1) // self.pad_to_multiple_of) * self.pad_to_multiple_of
batch = {"input_ids": [], "attention_mask": [], "labels": []}
for feature in features:
input_ids = feature["input_ids"]
attention_mask = feature["attention_mask"]
labels = feature["labels"]
padding_length = max_length - len(input_ids)
padded_input_ids = input_ids + [self.tokenizer.pad_token_id] * padding_length
padded_attention_mask = attention_mask + [0] * padding_length
padded_labels = labels + [-100] * padding_length
batch["input_ids"].append(padded_input_ids)
batch["attention_mask"].append(padded_attention_mask)
batch["labels"].append(padded_labels)
batch = {key: torch.tensor(values, dtype=torch.long) for key, values in batch.items()}
return batch
data_collator = EnhancedDataCollator(tokenizer, pad_to_multiple_of=8)
def create_enhanced_optimizer(model_params):
num_batches_per_epoch = train_size // BATCH_SIZE
optimizer_params = {
'lr': LEARNING_RATE,
'weight_decay': WEIGHT_DECAY,
'use_adabelief': True,
'use_cheb': False,
'use_warmup': True,
'use_madgrad': True,
'num_epochs': NUM_EPOCHS,
'using_gc': True,
'warmdown_active': True,
'num_batches_per_epoch': num_batches_per_epoch
}
return Ranger21(model_params, **optimizer_params)
from torch.optim.lr_scheduler import LambdaLR
class EnhancedCustomTrainer(Trainer):
def create_optimizer(self):
self.optimizer = create_enhanced_optimizer(self.model.parameters())
return self.optimizer
def create_scheduler(self, num_training_steps, optimizer=None):
if optimizer is None:
optimizer = self.optimizer
self.lr_scheduler = LambdaLR(optimizer, lr_lambda=lambda step: 1.0)
return self.lr_scheduler
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
outputs = model(**inputs)
loss = outputs.loss
return (loss, outputs) if return_outputs else loss
steps_per_epoch = train_size // BATCH_SIZE
total_steps = steps_per_epoch * NUM_EPOCHS
training_args = TrainingArguments(
output_dir='./chemq3minipret',
max_steps=total_steps,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRAD_ACCUM_STEPS,
logging_dir='./gptlo-1',
logging_strategy="steps",
logging_steps=max(1, steps_per_epoch // 4),
eval_strategy="steps",
eval_steps=max(1, steps_per_epoch // 4),
save_strategy="steps",
save_steps=steps_per_epoch,
save_total_limit=1,
dataloader_num_workers=0,
dataloader_pin_memory=False,
remove_unused_columns=False,
prediction_loss_only=False,
fp16=torch.cuda.is_available(),
gradient_checkpointing=True,
dataloader_drop_last=True,
report_to=None,
include_for_metrics=INCLUDE_FOR_METRICS,
)
print("Initializing enhanced trainer with MTP capabilities...")
trainer = EnhancedCustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=data_collator,
processing_class=tokenizer,
callbacks=[LossLoggerCallback("training_losses.txt", with_timestamp=True)]
)
model.set_mtp_training(True)
print(" MTP training mode enabled")
print("Starting enhanced training with MTP and Horizon Loss...")
try:
print("\n Phase 1: Warmup with standard Causal LM...")
model.set_mtp_training(False)
warmup_steps = max(1, total_steps // 5)
trainer.args.max_steps = warmup_steps
trainer.train()
print("\n Phase 2: Full MTP + Horizon Loss training...")
model.set_mtp_training(True)
trainer.args.max_steps = total_steps
trainer.train(resume_from_checkpoint=True)
print("Enhanced training completed successfully!")
trainer.save_model("./enhanced-qwen3-final")
tokenizer.save_pretrained("./enhanced-qwen3-final")
training_config = {
"model_type": "EnhancedQwen3ForCausalLM",
"num_future_tokens": 3,
"horizon_loss_enabled": True,
"mtp_head_enabled": True,
"training_phases": ["causal_lm_warmup", "mtp_horizon_training"],
"total_parameters": count_parameters(model),
}
config_path = "./enhanced-qwen3-final/training_config.json"
with open(config_path, "w") as f:
json.dump(training_config, f, indent=2)
print(f" Enhanced model, tokenizer, and config saved!")
except Exception as e:
print(f"Enhanced training failed with error: {e}")
import traceback
traceback.print_exc()
return
print("\nmTesting enhanced generation capabilities...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
try:
print("\n--- Standard Generation Test ---")
input_ids = tokenizer("<s> [C]", return_tensors="pt").input_ids.to(device)
with torch.no_grad():
model.set_mtp_training(False)
gen = model.generate(
input_ids,
max_length=GENERATION_CFG.get("max_length", 64),
top_k=GENERATION_CFG.get("top_k", 50),
top_p=GENERATION_CFG.get("top_p", 0.9),
temperature=GENERATION_CFG.get("temperature", 0.8),
do_sample=GENERATION_CFG.get("do_sample", True),
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
num_return_sequences=GENERATION_CFG.get("num_return_sequences", 3),
)
for i, sequence in enumerate(gen):
result = tokenizer.decode(sequence, skip_special_tokens=True)
print(f"Generated SELFIES {i+1}: {result}")
print("\n--- MTP Analysis Test ---")
model.set_mtp_training(True)
test_smiles = "[C]"
test_input = tokenizer(test_smiles, return_tensors="pt", add_special_tokens=True).to(device)
with torch.no_grad():
outputs = model(**test_input)
if hasattr(model.mtp_head, 'prediction_heads'):
hidden_states = model.model(test_input['input_ids']).last_hidden_state
mtp_outputs = model.mtp_head(hidden_states)
print(f"Input SELFIES: {test_smiles}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(test_input['input_ids'][0].tolist())}")
for i, (key, logits) in enumerate(mtp_outputs.items()):
top_tokens = torch.topk(logits[0], k=3, dim=-1)
print(f"\n{key} predictions:")
for pos in range(min(5, logits.size(1))):
pos_preds = []
for j in range(3):
token_id = top_tokens.indices[pos, j].item()
prob = torch.softmax(logits[0, pos], dim=-1)[token_id].item()
token = tokenizer.id_to_token.get(token_id, '<UNK>')
pos_preds.append(f"{token}({prob:.3f})")
print(f" Position {pos}: {', '.join(pos_preds)}")
print("\nEnhanced generation tests completed!")
except Exception as e:
print(f"Enhanced generation test failed: {e}")
import traceback
traceback.print_exc()
print("\nEnhanced Model Analysis:")
print(f"Total parameters: {count_parameters(model):,}")
mtp_params = sum(p.numel() for p in model.mtp_head.parameters() if p.requires_grad)
horizon_params = sum(p.numel() for p in model.horizon_loss.parameters() if p.requires_grad)
base_params = count_parameters(model) - mtp_params - horizon_params
print(f"Base model parameters: {base_params:,}")
print(f"MTP head parameters: {mtp_params:,}")
print(f"Horizon loss parameters: {horizon_params:,}")
print(f"Enhancement overhead: {((mtp_params + horizon_params) / base_params * 100):.2f}%")
print(f"\n Enhanced Model Architecture:")
print(f"- Base Model: Qwen3 with {config.num_hidden_layers} layers")
print(f"- Hidden Size: {config.hidden_size}")
print(f"- Attention Heads: {config.num_attention_heads}")
print(f"- Vocab Size: {config.vocab_size}")
print(f"- MTP Future Tokens: {model.mtp_head.num_future_tokens}")
print(f"- Horizon Loss Weights: Learnable")
print(f"- Training Mode: {'MTP + Horizon Loss' if model.use_mtp_training else 'Standard Causal LM'}")
print("\n Enhanced training pipeline completed successfully!")
if __name__ == "__main__":
main() |