Create user.py
Browse files
user.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import json, os, numpy as np
|
| 5 |
+
|
| 6 |
+
# ============================================================================
|
| 7 |
+
class ChunkTokenizer:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
self.chunk_to_idx = {}
|
| 10 |
+
self.idx_to_chunk = {}
|
| 11 |
+
self.vocab_size = 0
|
| 12 |
+
|
| 13 |
+
def load(self, path):
|
| 14 |
+
with open(path, 'r') as f:
|
| 15 |
+
vocab_data = json.load(f)
|
| 16 |
+
self.chunk_to_idx = vocab_data['chunk_to_idx']
|
| 17 |
+
self.idx_to_chunk = {int(k): v for k, v in vocab_data['idx_to_chunk'].items()}
|
| 18 |
+
self.vocab_size = vocab_data['vocab_size']
|
| 19 |
+
print(f"Loaded tokenizer ({self.vocab_size} tokens)")
|
| 20 |
+
|
| 21 |
+
def encode(self, text):
|
| 22 |
+
text = text.lower()
|
| 23 |
+
pos, indices = 0, []
|
| 24 |
+
while pos < len(text):
|
| 25 |
+
for size in (3, 2, 1):
|
| 26 |
+
chunk = text[pos:pos+size]
|
| 27 |
+
if chunk in self.chunk_to_idx:
|
| 28 |
+
indices.append(self.chunk_to_idx[chunk])
|
| 29 |
+
pos += size
|
| 30 |
+
break
|
| 31 |
+
else:
|
| 32 |
+
pos += 1
|
| 33 |
+
return indices
|
| 34 |
+
|
| 35 |
+
def decode(self, indices):
|
| 36 |
+
return ''.join([self.idx_to_chunk.get(int(i), '') for i in indices])
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# ============================================================================
|
| 40 |
+
class LoRPtLinear(nn.Module):
|
| 41 |
+
def __init__(self, in_features, out_features, rank=64):
|
| 42 |
+
super().__init__()
|
| 43 |
+
self.lora_A = nn.Parameter(torch.randn(out_features, rank) * 0.02)
|
| 44 |
+
self.lora_B = nn.Parameter(torch.randn(rank, in_features) * 0.02)
|
| 45 |
+
self.bias = nn.Parameter(torch.zeros(out_features))
|
| 46 |
+
|
| 47 |
+
def forward(self, x):
|
| 48 |
+
return F.linear(x, self.lora_A @ self.lora_B, self.bias)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class RWKVMambaHybrid(nn.Module):
|
| 52 |
+
def __init__(self, d_model, d_state=32):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.d_model = d_model
|
| 55 |
+
self.d_state = d_state
|
| 56 |
+
self.w_mix = nn.Parameter(torch.ones(d_model) * 0.5)
|
| 57 |
+
self.A = nn.Parameter(torch.randn(d_state, d_state) * 0.01)
|
| 58 |
+
self.B = nn.Parameter(torch.randn(d_state, d_model) * 0.01)
|
| 59 |
+
self.C = nn.Parameter(torch.randn(d_model, d_state) * 0.01)
|
| 60 |
+
self.D = nn.Parameter(torch.ones(d_model) * 0.1)
|
| 61 |
+
|
| 62 |
+
def forward(self, x):
|
| 63 |
+
B, T, C = x.shape
|
| 64 |
+
h = torch.zeros(B, C, device=x.device)
|
| 65 |
+
s = torch.zeros(B, self.d_state, device=x.device)
|
| 66 |
+
outputs = []
|
| 67 |
+
for t in range(T):
|
| 68 |
+
x_t = x[:, t, :]
|
| 69 |
+
h = self.w_mix * h + (1 - self.w_mix) * x_t
|
| 70 |
+
s = s @ self.A.T + x_t @ self.B.T
|
| 71 |
+
y_t = s @ self.C.T + h * self.D
|
| 72 |
+
outputs.append(y_t)
|
| 73 |
+
return torch.stack(outputs, dim=1)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class KQVAttention(nn.Module):
|
| 77 |
+
def __init__(self, d_model, n_heads=16, rank=64):
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.d_model = d_model
|
| 80 |
+
self.n_heads = n_heads
|
| 81 |
+
self.head_dim = d_model // n_heads
|
| 82 |
+
self.q_down = nn.Linear(d_model, rank)
|
| 83 |
+
self.q_up = nn.Linear(rank, d_model)
|
| 84 |
+
self.k_down = nn.Linear(d_model, rank)
|
| 85 |
+
self.k_up = nn.Linear(rank, d_model)
|
| 86 |
+
self.v_down = nn.Linear(d_model, rank)
|
| 87 |
+
self.v_up = nn.Linear(rank, d_model)
|
| 88 |
+
self.out_proj = nn.Linear(d_model, d_model)
|
| 89 |
+
|
| 90 |
+
def forward(self, x, mask=None):
|
| 91 |
+
B, T, C = x.shape
|
| 92 |
+
q = self.q_up(self.q_down(x))
|
| 93 |
+
k = self.k_up(self.k_down(x))
|
| 94 |
+
v = self.v_up(self.v_down(x))
|
| 95 |
+
q = q.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 96 |
+
k = k.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 97 |
+
v = v.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
|
| 98 |
+
attn = (q @ k.transpose(-2, -1)) / np.sqrt(self.head_dim)
|
| 99 |
+
if mask is not None:
|
| 100 |
+
attn = attn.masked_fill(mask == 0, float('-inf'))
|
| 101 |
+
attn = F.softmax(attn, dim=-1)
|
| 102 |
+
out = attn @ v
|
| 103 |
+
out = out.transpose(1, 2).contiguous().view(B, T, C)
|
| 104 |
+
return self.out_proj(out)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class i3Block(nn.Module):
|
| 108 |
+
def __init__(self, d_model, n_heads=16, d_state=32, rank=64, ffn_mult=4):
|
| 109 |
+
super().__init__()
|
| 110 |
+
self.hybrid = RWKVMambaHybrid(d_model, d_state)
|
| 111 |
+
self.ln1 = nn.LayerNorm(d_model)
|
| 112 |
+
self.attn = KQVAttention(d_model, n_heads, rank)
|
| 113 |
+
self.ln2 = nn.LayerNorm(d_model)
|
| 114 |
+
d_ff = d_model * ffn_mult
|
| 115 |
+
self.ffn = nn.Sequential(
|
| 116 |
+
LoRPtLinear(d_model, d_ff, rank),
|
| 117 |
+
nn.GELU(),
|
| 118 |
+
LoRPtLinear(d_ff, d_model, rank)
|
| 119 |
+
)
|
| 120 |
+
self.ln3 = nn.LayerNorm(d_model)
|
| 121 |
+
|
| 122 |
+
def forward(self, x, mask=None):
|
| 123 |
+
x = x + self.hybrid(self.ln1(x))
|
| 124 |
+
x = x + self.attn(self.ln2(x), mask)
|
| 125 |
+
x = x + self.ffn(self.ln3(x))
|
| 126 |
+
return x
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class i3Model(nn.Module):
|
| 130 |
+
def __init__(self, vocab_size, d_model=512, n_layers=24, n_heads=16,
|
| 131 |
+
max_seq_len=256, rank=64, d_state=32):
|
| 132 |
+
super().__init__()
|
| 133 |
+
self.vocab_size = vocab_size
|
| 134 |
+
self.d_model = d_model
|
| 135 |
+
self.max_seq_len = max_seq_len
|
| 136 |
+
self.embed = nn.Embedding(vocab_size, d_model)
|
| 137 |
+
self.pos_embed = nn.Embedding(max_seq_len, d_model)
|
| 138 |
+
self.layers = nn.ModuleList([
|
| 139 |
+
i3Block(d_model, n_heads, d_state, rank)
|
| 140 |
+
for _ in range(n_layers)
|
| 141 |
+
])
|
| 142 |
+
self.ln_f = nn.LayerNorm(d_model)
|
| 143 |
+
self.head = LoRPtLinear(d_model, vocab_size, rank)
|
| 144 |
+
|
| 145 |
+
def forward(self, idx):
|
| 146 |
+
B, T = idx.shape
|
| 147 |
+
pos = torch.arange(0, T, device=idx.device).unsqueeze(0)
|
| 148 |
+
x = self.embed(idx) + self.pos_embed(pos)
|
| 149 |
+
mask = torch.tril(torch.ones(T, T, device=idx.device)).view(1, 1, T, T)
|
| 150 |
+
for layer in self.layers:
|
| 151 |
+
x = layer(x, mask)
|
| 152 |
+
x = self.ln_f(x)
|
| 153 |
+
return self.head(x)
|
| 154 |
+
|
| 155 |
+
@torch.no_grad()
|
| 156 |
+
def generate(self, idx, max_new_tokens=100, temperature=0.8, top_k=40):
|
| 157 |
+
for _ in range(max_new_tokens):
|
| 158 |
+
idx_cond = idx[:, -self.max_seq_len:]
|
| 159 |
+
logits = self(idx_cond)[:, -1, :] / temperature
|
| 160 |
+
v, _ = torch.topk(logits, top_k)
|
| 161 |
+
logits[logits < v[:, [-1]]] = -float("inf")
|
| 162 |
+
probs = F.softmax(logits, dim=-1)
|
| 163 |
+
idx_next = torch.multinomial(probs, 1)
|
| 164 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
| 165 |
+
return idx
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
# ============================================================================
|
| 169 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 170 |
+
|
| 171 |
+
tokenizer = ChunkTokenizer()
|
| 172 |
+
tokenizer.load("tokenizer.json")
|
| 173 |
+
|
| 174 |
+
model = i3Model(
|
| 175 |
+
vocab_size=tokenizer.vocab_size,
|
| 176 |
+
d_model=512,
|
| 177 |
+
n_layers=24,
|
| 178 |
+
n_heads=16,
|
| 179 |
+
max_seq_len=256,
|
| 180 |
+
rank=64,
|
| 181 |
+
d_state=32
|
| 182 |
+
).to(device)
|
| 183 |
+
|
| 184 |
+
state_dict = torch.load("pytorch_model.bin", map_location=device)
|
| 185 |
+
model.load_state_dict(state_dict)
|
| 186 |
+
model.eval()
|
| 187 |
+
print("✓ Model loaded successfully")
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
# ============================================================================
|
| 191 |
+
@torch.no_grad()
|
| 192 |
+
def infer(prompt, max_new_tokens=100, temperature=0.8, top_k=40):
|
| 193 |
+
input_ids = torch.tensor([tokenizer.encode(prompt)], dtype=torch.long).to(device)
|
| 194 |
+
output = model.generate(input_ids, max_new_tokens=max_new_tokens,
|
| 195 |
+
temperature=temperature, top_k=top_k)
|
| 196 |
+
return tokenizer.decode(output[0].cpu().numpy())
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def chat_loop():
|
| 200 |
+
print("=== i3 Interactive Chat ([INST] format) ===")
|
| 201 |
+
history = ""
|
| 202 |
+
while True:
|
| 203 |
+
user_input = input("[You] ")
|
| 204 |
+
if user_input.strip().lower() in {"quit", "exit"}:
|
| 205 |
+
break
|
| 206 |
+
prompt = f"{history}[INST] {user_input.strip()} [/INST]"
|
| 207 |
+
reply = infer(prompt, max_new_tokens=120)
|
| 208 |
+
reply_clean = reply.replace(prompt.lower(), "").strip()
|
| 209 |
+
print("[i3]:", reply_clean)
|
| 210 |
+
history += f"[INST] {user_input.strip()} [/INST] {reply_clean} "
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# ============================================================================
|
| 214 |
+
print("\nExample:")
|
| 215 |
+
prompt = "[INST] What can we do to make people happier [/INST]"
|
| 216 |
+
print("Prompt:", prompt)
|
| 217 |
+
print("Generated:", infer(prompt))
|
| 218 |
+
|
| 219 |
+
# Optionally start a chat loop:
|
| 220 |
+
# chat_loop()
|