File size: 2,044 Bytes
f6b30c8 c8bddbd f6b30c8 a51ec6d f6b30c8 c8bddbd 667adf5 a51ec6d f6b30c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen3-Coder-30B-A3B-Instruct
tags:
- base_model:adapter:Qwen/Qwen3-Coder-30B-A3B-Instruct
- lora
- transformers
pipeline_tag: text-generation
model-index:
- name: peft-FT-3-Coder-30b-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/joshuareedenterprises-university-of-houston/qwen3coder-finetune-fp16/runs/fmhmghb5)
# peft-FT-3-Coder-30b-v3
This model is a fine-tuned version of [Qwen/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9121
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2459 | 1.0 | 17 | 0.9617 |
| 1.0765 | 2.0 | 34 | 0.9121 |
| 0.9091 | 3.0 | 51 | 0.9169 |
| 0.7589 | 4.0 | 68 | 0.9652 |
### Framework versions
- PEFT 0.17.1
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1 |