Commit
·
2deeab9
1
Parent(s):
9c80cc1
README draft (#2)
Browse files- README draft (ae44071eda26b5d24701b41b51128eb6ffc9e5c3)
README.md
CHANGED
|
@@ -2,2607 +2,114 @@
|
|
| 2 |
pipeline_tag: sentence-similarity
|
| 3 |
tags:
|
| 4 |
- finetuner
|
|
|
|
| 5 |
- sentence-transformers
|
| 6 |
- feature-extraction
|
| 7 |
- sentence-similarity
|
| 8 |
-
-
|
| 9 |
datasets:
|
| 10 |
-
-
|
| 11 |
language: en
|
| 12 |
license: apache-2.0
|
| 13 |
model-index:
|
| 14 |
-
- name: jina-embedding-s-en-v2
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
value: 11.863
|
| 116 |
-
- type: recall_at_1
|
| 117 |
-
value: 23.684
|
| 118 |
-
- type: recall_at_10
|
| 119 |
-
value: 77.027
|
| 120 |
-
- type: recall_at_100
|
| 121 |
-
value: 98.009
|
| 122 |
-
- type: recall_at_1000
|
| 123 |
-
value: 99.57300000000001
|
| 124 |
-
- type: recall_at_3
|
| 125 |
-
value: 48.577999999999996
|
| 126 |
-
- type: recall_at_5
|
| 127 |
-
value: 59.317
|
| 128 |
-
- task:
|
| 129 |
-
type: Clustering
|
| 130 |
-
dataset:
|
| 131 |
-
type: mteb/arxiv-clustering-p2p
|
| 132 |
-
name: MTEB ArxivClusteringP2P
|
| 133 |
-
config: default
|
| 134 |
-
split: test
|
| 135 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
| 136 |
-
metrics:
|
| 137 |
-
- type: v_measure
|
| 138 |
-
value: 44.249612940073035
|
| 139 |
-
- task:
|
| 140 |
-
type: Clustering
|
| 141 |
-
dataset:
|
| 142 |
-
type: mteb/arxiv-clustering-s2s
|
| 143 |
-
name: MTEB ArxivClusteringS2S
|
| 144 |
-
config: default
|
| 145 |
-
split: test
|
| 146 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
| 147 |
-
metrics:
|
| 148 |
-
- type: v_measure
|
| 149 |
-
value: 35.39423011105325
|
| 150 |
-
- task:
|
| 151 |
-
type: Reranking
|
| 152 |
-
dataset:
|
| 153 |
-
type: mteb/askubuntudupquestions-reranking
|
| 154 |
-
name: MTEB AskUbuntuDupQuestions
|
| 155 |
-
config: default
|
| 156 |
-
split: test
|
| 157 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
| 158 |
-
metrics:
|
| 159 |
-
- type: map
|
| 160 |
-
value: 59.89078304869791
|
| 161 |
-
- type: mrr
|
| 162 |
-
value: 73.5045948203843
|
| 163 |
-
- task:
|
| 164 |
-
type: STS
|
| 165 |
-
dataset:
|
| 166 |
-
type: mteb/biosses-sts
|
| 167 |
-
name: MTEB BIOSSES
|
| 168 |
-
config: default
|
| 169 |
-
split: test
|
| 170 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
| 171 |
-
metrics:
|
| 172 |
-
- type: cos_sim_pearson
|
| 173 |
-
value: 82.49373811125967
|
| 174 |
-
- type: cos_sim_spearman
|
| 175 |
-
value: 81.0446177409314
|
| 176 |
-
- type: euclidean_pearson
|
| 177 |
-
value: 82.1327844624042
|
| 178 |
-
- type: euclidean_spearman
|
| 179 |
-
value: 81.0446177409314
|
| 180 |
-
- type: manhattan_pearson
|
| 181 |
-
value: 81.88575541723692
|
| 182 |
-
- type: manhattan_spearman
|
| 183 |
-
value: 81.0705219456341
|
| 184 |
-
- task:
|
| 185 |
-
type: Classification
|
| 186 |
-
dataset:
|
| 187 |
-
type: mteb/banking77
|
| 188 |
-
name: MTEB Banking77Classification
|
| 189 |
-
config: default
|
| 190 |
-
split: test
|
| 191 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
| 192 |
-
metrics:
|
| 193 |
-
- type: accuracy
|
| 194 |
-
value: 78.27272727272728
|
| 195 |
-
- type: f1
|
| 196 |
-
value: 77.36583416688741
|
| 197 |
-
- task:
|
| 198 |
-
type: Clustering
|
| 199 |
-
dataset:
|
| 200 |
-
type: mteb/biorxiv-clustering-p2p
|
| 201 |
-
name: MTEB BiorxivClusteringP2P
|
| 202 |
-
config: default
|
| 203 |
-
split: test
|
| 204 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
| 205 |
-
metrics:
|
| 206 |
-
- type: v_measure
|
| 207 |
-
value: 36.12447585258704
|
| 208 |
-
- task:
|
| 209 |
-
type: Clustering
|
| 210 |
-
dataset:
|
| 211 |
-
type: mteb/biorxiv-clustering-s2s
|
| 212 |
-
name: MTEB BiorxivClusteringS2S
|
| 213 |
-
config: default
|
| 214 |
-
split: test
|
| 215 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
| 216 |
-
metrics:
|
| 217 |
-
- type: v_measure
|
| 218 |
-
value: 29.305990951348743
|
| 219 |
-
- task:
|
| 220 |
-
type: Retrieval
|
| 221 |
-
dataset:
|
| 222 |
-
type: BeIR/cqadupstack
|
| 223 |
-
name: MTEB CQADupstackAndroidRetrieval
|
| 224 |
-
config: default
|
| 225 |
-
split: test
|
| 226 |
-
revision: None
|
| 227 |
-
metrics:
|
| 228 |
-
- type: map_at_1
|
| 229 |
-
value: 31.458000000000002
|
| 230 |
-
- type: map_at_10
|
| 231 |
-
value: 42.132
|
| 232 |
-
- type: map_at_100
|
| 233 |
-
value: 43.47
|
| 234 |
-
- type: map_at_1000
|
| 235 |
-
value: 43.612
|
| 236 |
-
- type: map_at_3
|
| 237 |
-
value: 38.718
|
| 238 |
-
- type: map_at_5
|
| 239 |
-
value: 40.556
|
| 240 |
-
- type: mrr_at_1
|
| 241 |
-
value: 38.627
|
| 242 |
-
- type: mrr_at_10
|
| 243 |
-
value: 47.998000000000005
|
| 244 |
-
- type: mrr_at_100
|
| 245 |
-
value: 48.726
|
| 246 |
-
- type: mrr_at_1000
|
| 247 |
-
value: 48.778
|
| 248 |
-
- type: mrr_at_3
|
| 249 |
-
value: 45.255
|
| 250 |
-
- type: mrr_at_5
|
| 251 |
-
value: 46.893
|
| 252 |
-
- type: ndcg_at_1
|
| 253 |
-
value: 38.627
|
| 254 |
-
- type: ndcg_at_10
|
| 255 |
-
value: 48.229
|
| 256 |
-
- type: ndcg_at_100
|
| 257 |
-
value: 53.108999999999995
|
| 258 |
-
- type: ndcg_at_1000
|
| 259 |
-
value: 55.385
|
| 260 |
-
- type: ndcg_at_3
|
| 261 |
-
value: 43.191
|
| 262 |
-
- type: ndcg_at_5
|
| 263 |
-
value: 45.385999999999996
|
| 264 |
-
- type: precision_at_1
|
| 265 |
-
value: 38.627
|
| 266 |
-
- type: precision_at_10
|
| 267 |
-
value: 9.142
|
| 268 |
-
- type: precision_at_100
|
| 269 |
-
value: 1.462
|
| 270 |
-
- type: precision_at_1000
|
| 271 |
-
value: 0.19499999999999998
|
| 272 |
-
- type: precision_at_3
|
| 273 |
-
value: 20.552999999999997
|
| 274 |
-
- type: precision_at_5
|
| 275 |
-
value: 14.677999999999999
|
| 276 |
-
- type: recall_at_1
|
| 277 |
-
value: 31.458000000000002
|
| 278 |
-
- type: recall_at_10
|
| 279 |
-
value: 59.619
|
| 280 |
-
- type: recall_at_100
|
| 281 |
-
value: 79.953
|
| 282 |
-
- type: recall_at_1000
|
| 283 |
-
value: 94.921
|
| 284 |
-
- type: recall_at_3
|
| 285 |
-
value: 44.744
|
| 286 |
-
- type: recall_at_5
|
| 287 |
-
value: 51.010999999999996
|
| 288 |
-
- task:
|
| 289 |
-
type: Retrieval
|
| 290 |
-
dataset:
|
| 291 |
-
type: BeIR/cqadupstack
|
| 292 |
-
name: MTEB CQADupstackEnglishRetrieval
|
| 293 |
-
config: default
|
| 294 |
-
split: test
|
| 295 |
-
revision: None
|
| 296 |
-
metrics:
|
| 297 |
-
- type: map_at_1
|
| 298 |
-
value: 26.762000000000004
|
| 299 |
-
- type: map_at_10
|
| 300 |
-
value: 35.366
|
| 301 |
-
- type: map_at_100
|
| 302 |
-
value: 36.481
|
| 303 |
-
- type: map_at_1000
|
| 304 |
-
value: 36.614999999999995
|
| 305 |
-
- type: map_at_3
|
| 306 |
-
value: 33.071
|
| 307 |
-
- type: map_at_5
|
| 308 |
-
value: 34.495
|
| 309 |
-
- type: mrr_at_1
|
| 310 |
-
value: 33.312000000000005
|
| 311 |
-
- type: mrr_at_10
|
| 312 |
-
value: 40.841
|
| 313 |
-
- type: mrr_at_100
|
| 314 |
-
value: 41.54
|
| 315 |
-
- type: mrr_at_1000
|
| 316 |
-
value: 41.592
|
| 317 |
-
- type: mrr_at_3
|
| 318 |
-
value: 38.928000000000004
|
| 319 |
-
- type: mrr_at_5
|
| 320 |
-
value: 40.119
|
| 321 |
-
- type: ndcg_at_1
|
| 322 |
-
value: 33.312000000000005
|
| 323 |
-
- type: ndcg_at_10
|
| 324 |
-
value: 40.238
|
| 325 |
-
- type: ndcg_at_100
|
| 326 |
-
value: 44.647
|
| 327 |
-
- type: ndcg_at_1000
|
| 328 |
-
value: 47.010999999999996
|
| 329 |
-
- type: ndcg_at_3
|
| 330 |
-
value: 36.991
|
| 331 |
-
- type: ndcg_at_5
|
| 332 |
-
value: 38.721
|
| 333 |
-
- type: precision_at_1
|
| 334 |
-
value: 33.312000000000005
|
| 335 |
-
- type: precision_at_10
|
| 336 |
-
value: 7.4079999999999995
|
| 337 |
-
- type: precision_at_100
|
| 338 |
-
value: 1.253
|
| 339 |
-
- type: precision_at_1000
|
| 340 |
-
value: 0.17500000000000002
|
| 341 |
-
- type: precision_at_3
|
| 342 |
-
value: 17.898
|
| 343 |
-
- type: precision_at_5
|
| 344 |
-
value: 12.687999999999999
|
| 345 |
-
- type: recall_at_1
|
| 346 |
-
value: 26.762000000000004
|
| 347 |
-
- type: recall_at_10
|
| 348 |
-
value: 48.41
|
| 349 |
-
- type: recall_at_100
|
| 350 |
-
value: 67.523
|
| 351 |
-
- type: recall_at_1000
|
| 352 |
-
value: 82.91199999999999
|
| 353 |
-
- type: recall_at_3
|
| 354 |
-
value: 38.6
|
| 355 |
-
- type: recall_at_5
|
| 356 |
-
value: 43.477
|
| 357 |
-
- task:
|
| 358 |
-
type: Retrieval
|
| 359 |
-
dataset:
|
| 360 |
-
type: BeIR/cqadupstack
|
| 361 |
-
name: MTEB CQADupstackGamingRetrieval
|
| 362 |
-
config: default
|
| 363 |
-
split: test
|
| 364 |
-
revision: None
|
| 365 |
-
metrics:
|
| 366 |
-
- type: map_at_1
|
| 367 |
-
value: 37.578
|
| 368 |
-
- type: map_at_10
|
| 369 |
-
value: 49.415
|
| 370 |
-
- type: map_at_100
|
| 371 |
-
value: 50.339
|
| 372 |
-
- type: map_at_1000
|
| 373 |
-
value: 50.402
|
| 374 |
-
- type: map_at_3
|
| 375 |
-
value: 46.412
|
| 376 |
-
- type: map_at_5
|
| 377 |
-
value: 48.183
|
| 378 |
-
- type: mrr_at_1
|
| 379 |
-
value: 43.072
|
| 380 |
-
- type: mrr_at_10
|
| 381 |
-
value: 52.82599999999999
|
| 382 |
-
- type: mrr_at_100
|
| 383 |
-
value: 53.456
|
| 384 |
-
- type: mrr_at_1000
|
| 385 |
-
value: 53.493
|
| 386 |
-
- type: mrr_at_3
|
| 387 |
-
value: 50.407999999999994
|
| 388 |
-
- type: mrr_at_5
|
| 389 |
-
value: 51.922000000000004
|
| 390 |
-
- type: ndcg_at_1
|
| 391 |
-
value: 43.072
|
| 392 |
-
- type: ndcg_at_10
|
| 393 |
-
value: 54.949000000000005
|
| 394 |
-
- type: ndcg_at_100
|
| 395 |
-
value: 58.744
|
| 396 |
-
- type: ndcg_at_1000
|
| 397 |
-
value: 60.150000000000006
|
| 398 |
-
- type: ndcg_at_3
|
| 399 |
-
value: 49.864000000000004
|
| 400 |
-
- type: ndcg_at_5
|
| 401 |
-
value: 52.503
|
| 402 |
-
- type: precision_at_1
|
| 403 |
-
value: 43.072
|
| 404 |
-
- type: precision_at_10
|
| 405 |
-
value: 8.734
|
| 406 |
-
- type: precision_at_100
|
| 407 |
-
value: 1.1520000000000001
|
| 408 |
-
- type: precision_at_1000
|
| 409 |
-
value: 0.132
|
| 410 |
-
- type: precision_at_3
|
| 411 |
-
value: 22.131999999999998
|
| 412 |
-
- type: precision_at_5
|
| 413 |
-
value: 15.21
|
| 414 |
-
- type: recall_at_1
|
| 415 |
-
value: 37.578
|
| 416 |
-
- type: recall_at_10
|
| 417 |
-
value: 67.918
|
| 418 |
-
- type: recall_at_100
|
| 419 |
-
value: 84.373
|
| 420 |
-
- type: recall_at_1000
|
| 421 |
-
value: 94.529
|
| 422 |
-
- type: recall_at_3
|
| 423 |
-
value: 54.457
|
| 424 |
-
- type: recall_at_5
|
| 425 |
-
value: 60.941
|
| 426 |
-
- task:
|
| 427 |
-
type: Retrieval
|
| 428 |
-
dataset:
|
| 429 |
-
type: BeIR/cqadupstack
|
| 430 |
-
name: MTEB CQADupstackGisRetrieval
|
| 431 |
-
config: default
|
| 432 |
-
split: test
|
| 433 |
-
revision: None
|
| 434 |
-
metrics:
|
| 435 |
-
- type: map_at_1
|
| 436 |
-
value: 23.394000000000002
|
| 437 |
-
- type: map_at_10
|
| 438 |
-
value: 31.791000000000004
|
| 439 |
-
- type: map_at_100
|
| 440 |
-
value: 32.64
|
| 441 |
-
- type: map_at_1000
|
| 442 |
-
value: 32.727000000000004
|
| 443 |
-
- type: map_at_3
|
| 444 |
-
value: 29.557
|
| 445 |
-
- type: map_at_5
|
| 446 |
-
value: 30.858999999999998
|
| 447 |
-
- type: mrr_at_1
|
| 448 |
-
value: 25.085
|
| 449 |
-
- type: mrr_at_10
|
| 450 |
-
value: 33.721000000000004
|
| 451 |
-
- type: mrr_at_100
|
| 452 |
-
value: 34.492
|
| 453 |
-
- type: mrr_at_1000
|
| 454 |
-
value: 34.564
|
| 455 |
-
- type: mrr_at_3
|
| 456 |
-
value: 31.619999999999997
|
| 457 |
-
- type: mrr_at_5
|
| 458 |
-
value: 32.896
|
| 459 |
-
- type: ndcg_at_1
|
| 460 |
-
value: 25.085
|
| 461 |
-
- type: ndcg_at_10
|
| 462 |
-
value: 36.370000000000005
|
| 463 |
-
- type: ndcg_at_100
|
| 464 |
-
value: 40.96
|
| 465 |
-
- type: ndcg_at_1000
|
| 466 |
-
value: 43.171
|
| 467 |
-
- type: ndcg_at_3
|
| 468 |
-
value: 32.104
|
| 469 |
-
- type: ndcg_at_5
|
| 470 |
-
value: 34.300000000000004
|
| 471 |
-
- type: precision_at_1
|
| 472 |
-
value: 25.085
|
| 473 |
-
- type: precision_at_10
|
| 474 |
-
value: 5.537
|
| 475 |
-
- type: precision_at_100
|
| 476 |
-
value: 0.8340000000000001
|
| 477 |
-
- type: precision_at_1000
|
| 478 |
-
value: 0.105
|
| 479 |
-
- type: precision_at_3
|
| 480 |
-
value: 13.71
|
| 481 |
-
- type: precision_at_5
|
| 482 |
-
value: 9.514
|
| 483 |
-
- type: recall_at_1
|
| 484 |
-
value: 23.394000000000002
|
| 485 |
-
- type: recall_at_10
|
| 486 |
-
value: 48.549
|
| 487 |
-
- type: recall_at_100
|
| 488 |
-
value: 70.341
|
| 489 |
-
- type: recall_at_1000
|
| 490 |
-
value: 87.01299999999999
|
| 491 |
-
- type: recall_at_3
|
| 492 |
-
value: 36.947
|
| 493 |
-
- type: recall_at_5
|
| 494 |
-
value: 42.365
|
| 495 |
-
- task:
|
| 496 |
-
type: Retrieval
|
| 497 |
-
dataset:
|
| 498 |
-
type: BeIR/cqadupstack
|
| 499 |
-
name: MTEB CQADupstackMathematicaRetrieval
|
| 500 |
-
config: default
|
| 501 |
-
split: test
|
| 502 |
-
revision: None
|
| 503 |
-
metrics:
|
| 504 |
-
- type: map_at_1
|
| 505 |
-
value: 14.818000000000001
|
| 506 |
-
- type: map_at_10
|
| 507 |
-
value: 21.773999999999997
|
| 508 |
-
- type: map_at_100
|
| 509 |
-
value: 22.787
|
| 510 |
-
- type: map_at_1000
|
| 511 |
-
value: 22.915
|
| 512 |
-
- type: map_at_3
|
| 513 |
-
value: 19.414
|
| 514 |
-
- type: map_at_5
|
| 515 |
-
value: 20.651
|
| 516 |
-
- type: mrr_at_1
|
| 517 |
-
value: 18.657
|
| 518 |
-
- type: mrr_at_10
|
| 519 |
-
value: 25.794
|
| 520 |
-
- type: mrr_at_100
|
| 521 |
-
value: 26.695999999999998
|
| 522 |
-
- type: mrr_at_1000
|
| 523 |
-
value: 26.776
|
| 524 |
-
- type: mrr_at_3
|
| 525 |
-
value: 23.279
|
| 526 |
-
- type: mrr_at_5
|
| 527 |
-
value: 24.598
|
| 528 |
-
- type: ndcg_at_1
|
| 529 |
-
value: 18.657
|
| 530 |
-
- type: ndcg_at_10
|
| 531 |
-
value: 26.511000000000003
|
| 532 |
-
- type: ndcg_at_100
|
| 533 |
-
value: 31.447999999999997
|
| 534 |
-
- type: ndcg_at_1000
|
| 535 |
-
value: 34.71
|
| 536 |
-
- type: ndcg_at_3
|
| 537 |
-
value: 21.92
|
| 538 |
-
- type: ndcg_at_5
|
| 539 |
-
value: 23.938000000000002
|
| 540 |
-
- type: precision_at_1
|
| 541 |
-
value: 18.657
|
| 542 |
-
- type: precision_at_10
|
| 543 |
-
value: 4.9
|
| 544 |
-
- type: precision_at_100
|
| 545 |
-
value: 0.851
|
| 546 |
-
- type: precision_at_1000
|
| 547 |
-
value: 0.127
|
| 548 |
-
- type: precision_at_3
|
| 549 |
-
value: 10.488999999999999
|
| 550 |
-
- type: precision_at_5
|
| 551 |
-
value: 7.710999999999999
|
| 552 |
-
- type: recall_at_1
|
| 553 |
-
value: 14.818000000000001
|
| 554 |
-
- type: recall_at_10
|
| 555 |
-
value: 37.408
|
| 556 |
-
- type: recall_at_100
|
| 557 |
-
value: 58.81999999999999
|
| 558 |
-
- type: recall_at_1000
|
| 559 |
-
value: 82.612
|
| 560 |
-
- type: recall_at_3
|
| 561 |
-
value: 24.561
|
| 562 |
-
- type: recall_at_5
|
| 563 |
-
value: 29.685
|
| 564 |
-
- task:
|
| 565 |
-
type: Retrieval
|
| 566 |
-
dataset:
|
| 567 |
-
type: BeIR/cqadupstack
|
| 568 |
-
name: MTEB CQADupstackPhysicsRetrieval
|
| 569 |
-
config: default
|
| 570 |
-
split: test
|
| 571 |
-
revision: None
|
| 572 |
-
metrics:
|
| 573 |
-
- type: map_at_1
|
| 574 |
-
value: 26.332
|
| 575 |
-
- type: map_at_10
|
| 576 |
-
value: 35.366
|
| 577 |
-
- type: map_at_100
|
| 578 |
-
value: 36.569
|
| 579 |
-
- type: map_at_1000
|
| 580 |
-
value: 36.689
|
| 581 |
-
- type: map_at_3
|
| 582 |
-
value: 32.582
|
| 583 |
-
- type: map_at_5
|
| 584 |
-
value: 34.184
|
| 585 |
-
- type: mrr_at_1
|
| 586 |
-
value: 32.05
|
| 587 |
-
- type: mrr_at_10
|
| 588 |
-
value: 40.902
|
| 589 |
-
- type: mrr_at_100
|
| 590 |
-
value: 41.754000000000005
|
| 591 |
-
- type: mrr_at_1000
|
| 592 |
-
value: 41.811
|
| 593 |
-
- type: mrr_at_3
|
| 594 |
-
value: 38.547
|
| 595 |
-
- type: mrr_at_5
|
| 596 |
-
value: 40.019
|
| 597 |
-
- type: ndcg_at_1
|
| 598 |
-
value: 32.05
|
| 599 |
-
- type: ndcg_at_10
|
| 600 |
-
value: 40.999
|
| 601 |
-
- type: ndcg_at_100
|
| 602 |
-
value: 46.284
|
| 603 |
-
- type: ndcg_at_1000
|
| 604 |
-
value: 48.698
|
| 605 |
-
- type: ndcg_at_3
|
| 606 |
-
value: 36.39
|
| 607 |
-
- type: ndcg_at_5
|
| 608 |
-
value: 38.699
|
| 609 |
-
- type: precision_at_1
|
| 610 |
-
value: 32.05
|
| 611 |
-
- type: precision_at_10
|
| 612 |
-
value: 7.315
|
| 613 |
-
- type: precision_at_100
|
| 614 |
-
value: 1.172
|
| 615 |
-
- type: precision_at_1000
|
| 616 |
-
value: 0.156
|
| 617 |
-
- type: precision_at_3
|
| 618 |
-
value: 17.036
|
| 619 |
-
- type: precision_at_5
|
| 620 |
-
value: 12.089
|
| 621 |
-
- type: recall_at_1
|
| 622 |
-
value: 26.332
|
| 623 |
-
- type: recall_at_10
|
| 624 |
-
value: 52.410000000000004
|
| 625 |
-
- type: recall_at_100
|
| 626 |
-
value: 74.763
|
| 627 |
-
- type: recall_at_1000
|
| 628 |
-
value: 91.03
|
| 629 |
-
- type: recall_at_3
|
| 630 |
-
value: 39.527
|
| 631 |
-
- type: recall_at_5
|
| 632 |
-
value: 45.517
|
| 633 |
-
- task:
|
| 634 |
-
type: Retrieval
|
| 635 |
-
dataset:
|
| 636 |
-
type: BeIR/cqadupstack
|
| 637 |
-
name: MTEB CQADupstackProgrammersRetrieval
|
| 638 |
-
config: default
|
| 639 |
-
split: test
|
| 640 |
-
revision: None
|
| 641 |
-
metrics:
|
| 642 |
-
- type: map_at_1
|
| 643 |
-
value: 22.849
|
| 644 |
-
- type: map_at_10
|
| 645 |
-
value: 31.502000000000002
|
| 646 |
-
- type: map_at_100
|
| 647 |
-
value: 32.854
|
| 648 |
-
- type: map_at_1000
|
| 649 |
-
value: 32.975
|
| 650 |
-
- type: map_at_3
|
| 651 |
-
value: 28.997
|
| 652 |
-
- type: map_at_5
|
| 653 |
-
value: 30.508999999999997
|
| 654 |
-
- type: mrr_at_1
|
| 655 |
-
value: 28.195999999999998
|
| 656 |
-
- type: mrr_at_10
|
| 657 |
-
value: 36.719
|
| 658 |
-
- type: mrr_at_100
|
| 659 |
-
value: 37.674
|
| 660 |
-
- type: mrr_at_1000
|
| 661 |
-
value: 37.743
|
| 662 |
-
- type: mrr_at_3
|
| 663 |
-
value: 34.532000000000004
|
| 664 |
-
- type: mrr_at_5
|
| 665 |
-
value: 35.845
|
| 666 |
-
- type: ndcg_at_1
|
| 667 |
-
value: 28.195999999999998
|
| 668 |
-
- type: ndcg_at_10
|
| 669 |
-
value: 36.605
|
| 670 |
-
- type: ndcg_at_100
|
| 671 |
-
value: 42.524
|
| 672 |
-
- type: ndcg_at_1000
|
| 673 |
-
value: 45.171
|
| 674 |
-
- type: ndcg_at_3
|
| 675 |
-
value: 32.574
|
| 676 |
-
- type: ndcg_at_5
|
| 677 |
-
value: 34.617
|
| 678 |
-
- type: precision_at_1
|
| 679 |
-
value: 28.195999999999998
|
| 680 |
-
- type: precision_at_10
|
| 681 |
-
value: 6.598
|
| 682 |
-
- type: precision_at_100
|
| 683 |
-
value: 1.121
|
| 684 |
-
- type: precision_at_1000
|
| 685 |
-
value: 0.153
|
| 686 |
-
- type: precision_at_3
|
| 687 |
-
value: 15.601
|
| 688 |
-
- type: precision_at_5
|
| 689 |
-
value: 11.073
|
| 690 |
-
- type: recall_at_1
|
| 691 |
-
value: 22.849
|
| 692 |
-
- type: recall_at_10
|
| 693 |
-
value: 46.528000000000006
|
| 694 |
-
- type: recall_at_100
|
| 695 |
-
value: 72.09
|
| 696 |
-
- type: recall_at_1000
|
| 697 |
-
value: 90.398
|
| 698 |
-
- type: recall_at_3
|
| 699 |
-
value: 35.116
|
| 700 |
-
- type: recall_at_5
|
| 701 |
-
value: 40.778
|
| 702 |
-
- task:
|
| 703 |
-
type: Retrieval
|
| 704 |
-
dataset:
|
| 705 |
-
type: BeIR/cqadupstack
|
| 706 |
-
name: MTEB CQADupstackRetrieval
|
| 707 |
-
config: default
|
| 708 |
-
split: test
|
| 709 |
-
revision: None
|
| 710 |
-
metrics:
|
| 711 |
-
- type: map_at_1
|
| 712 |
-
value: 24.319500000000005
|
| 713 |
-
- type: map_at_10
|
| 714 |
-
value: 32.530166666666666
|
| 715 |
-
- type: map_at_100
|
| 716 |
-
value: 33.61566666666667
|
| 717 |
-
- type: map_at_1000
|
| 718 |
-
value: 33.73808333333333
|
| 719 |
-
- type: map_at_3
|
| 720 |
-
value: 30.074583333333326
|
| 721 |
-
- type: map_at_5
|
| 722 |
-
value: 31.429666666666662
|
| 723 |
-
- type: mrr_at_1
|
| 724 |
-
value: 28.675916666666666
|
| 725 |
-
- type: mrr_at_10
|
| 726 |
-
value: 36.49308333333334
|
| 727 |
-
- type: mrr_at_100
|
| 728 |
-
value: 37.310583333333334
|
| 729 |
-
- type: mrr_at_1000
|
| 730 |
-
value: 37.37616666666666
|
| 731 |
-
- type: mrr_at_3
|
| 732 |
-
value: 34.283166666666666
|
| 733 |
-
- type: mrr_at_5
|
| 734 |
-
value: 35.54333333333334
|
| 735 |
-
- type: ndcg_at_1
|
| 736 |
-
value: 28.675916666666666
|
| 737 |
-
- type: ndcg_at_10
|
| 738 |
-
value: 37.403416666666665
|
| 739 |
-
- type: ndcg_at_100
|
| 740 |
-
value: 42.25783333333333
|
| 741 |
-
- type: ndcg_at_1000
|
| 742 |
-
value: 44.778333333333336
|
| 743 |
-
- type: ndcg_at_3
|
| 744 |
-
value: 33.17099999999999
|
| 745 |
-
- type: ndcg_at_5
|
| 746 |
-
value: 35.12666666666667
|
| 747 |
-
- type: precision_at_1
|
| 748 |
-
value: 28.675916666666666
|
| 749 |
-
- type: precision_at_10
|
| 750 |
-
value: 6.463083333333334
|
| 751 |
-
- type: precision_at_100
|
| 752 |
-
value: 1.0585
|
| 753 |
-
- type: precision_at_1000
|
| 754 |
-
value: 0.14633333333333332
|
| 755 |
-
- type: precision_at_3
|
| 756 |
-
value: 15.158999999999997
|
| 757 |
-
- type: precision_at_5
|
| 758 |
-
value: 10.673916666666667
|
| 759 |
-
- type: recall_at_1
|
| 760 |
-
value: 24.319500000000005
|
| 761 |
-
- type: recall_at_10
|
| 762 |
-
value: 47.9135
|
| 763 |
-
- type: recall_at_100
|
| 764 |
-
value: 69.40266666666666
|
| 765 |
-
- type: recall_at_1000
|
| 766 |
-
value: 87.12566666666666
|
| 767 |
-
- type: recall_at_3
|
| 768 |
-
value: 36.03149999999999
|
| 769 |
-
- type: recall_at_5
|
| 770 |
-
value: 41.12791666666668
|
| 771 |
-
- task:
|
| 772 |
-
type: Retrieval
|
| 773 |
-
dataset:
|
| 774 |
-
type: BeIR/cqadupstack
|
| 775 |
-
name: MTEB CQADupstackStatsRetrieval
|
| 776 |
-
config: default
|
| 777 |
-
split: test
|
| 778 |
-
revision: None
|
| 779 |
-
metrics:
|
| 780 |
-
- type: map_at_1
|
| 781 |
-
value: 22.997
|
| 782 |
-
- type: map_at_10
|
| 783 |
-
value: 28.754999999999995
|
| 784 |
-
- type: map_at_100
|
| 785 |
-
value: 29.555999999999997
|
| 786 |
-
- type: map_at_1000
|
| 787 |
-
value: 29.653000000000002
|
| 788 |
-
- type: map_at_3
|
| 789 |
-
value: 27.069
|
| 790 |
-
- type: map_at_5
|
| 791 |
-
value: 27.884999999999998
|
| 792 |
-
- type: mrr_at_1
|
| 793 |
-
value: 25.767
|
| 794 |
-
- type: mrr_at_10
|
| 795 |
-
value: 31.195
|
| 796 |
-
- type: mrr_at_100
|
| 797 |
-
value: 31.964
|
| 798 |
-
- type: mrr_at_1000
|
| 799 |
-
value: 32.039
|
| 800 |
-
- type: mrr_at_3
|
| 801 |
-
value: 29.601
|
| 802 |
-
- type: mrr_at_5
|
| 803 |
-
value: 30.345
|
| 804 |
-
- type: ndcg_at_1
|
| 805 |
-
value: 25.767
|
| 806 |
-
- type: ndcg_at_10
|
| 807 |
-
value: 32.234
|
| 808 |
-
- type: ndcg_at_100
|
| 809 |
-
value: 36.461
|
| 810 |
-
- type: ndcg_at_1000
|
| 811 |
-
value: 39.005
|
| 812 |
-
- type: ndcg_at_3
|
| 813 |
-
value: 29.052
|
| 814 |
-
- type: ndcg_at_5
|
| 815 |
-
value: 30.248
|
| 816 |
-
- type: precision_at_1
|
| 817 |
-
value: 25.767
|
| 818 |
-
- type: precision_at_10
|
| 819 |
-
value: 4.893
|
| 820 |
-
- type: precision_at_100
|
| 821 |
-
value: 0.761
|
| 822 |
-
- type: precision_at_1000
|
| 823 |
-
value: 0.105
|
| 824 |
-
- type: precision_at_3
|
| 825 |
-
value: 12.219
|
| 826 |
-
- type: precision_at_5
|
| 827 |
-
value: 8.19
|
| 828 |
-
- type: recall_at_1
|
| 829 |
-
value: 22.997
|
| 830 |
-
- type: recall_at_10
|
| 831 |
-
value: 40.652
|
| 832 |
-
- type: recall_at_100
|
| 833 |
-
value: 60.302
|
| 834 |
-
- type: recall_at_1000
|
| 835 |
-
value: 79.17999999999999
|
| 836 |
-
- type: recall_at_3
|
| 837 |
-
value: 31.680999999999997
|
| 838 |
-
- type: recall_at_5
|
| 839 |
-
value: 34.698
|
| 840 |
-
- task:
|
| 841 |
-
type: Retrieval
|
| 842 |
-
dataset:
|
| 843 |
-
type: BeIR/cqadupstack
|
| 844 |
-
name: MTEB CQADupstackTexRetrieval
|
| 845 |
-
config: default
|
| 846 |
-
split: test
|
| 847 |
-
revision: None
|
| 848 |
-
metrics:
|
| 849 |
-
- type: map_at_1
|
| 850 |
-
value: 16.3
|
| 851 |
-
- type: map_at_10
|
| 852 |
-
value: 22.581
|
| 853 |
-
- type: map_at_100
|
| 854 |
-
value: 23.517
|
| 855 |
-
- type: map_at_1000
|
| 856 |
-
value: 23.638
|
| 857 |
-
- type: map_at_3
|
| 858 |
-
value: 20.567
|
| 859 |
-
- type: map_at_5
|
| 860 |
-
value: 21.688
|
| 861 |
-
- type: mrr_at_1
|
| 862 |
-
value: 19.683
|
| 863 |
-
- type: mrr_at_10
|
| 864 |
-
value: 26.185000000000002
|
| 865 |
-
- type: mrr_at_100
|
| 866 |
-
value: 27.014
|
| 867 |
-
- type: mrr_at_1000
|
| 868 |
-
value: 27.092
|
| 869 |
-
- type: mrr_at_3
|
| 870 |
-
value: 24.145
|
| 871 |
-
- type: mrr_at_5
|
| 872 |
-
value: 25.308999999999997
|
| 873 |
-
- type: ndcg_at_1
|
| 874 |
-
value: 19.683
|
| 875 |
-
- type: ndcg_at_10
|
| 876 |
-
value: 26.699
|
| 877 |
-
- type: ndcg_at_100
|
| 878 |
-
value: 31.35
|
| 879 |
-
- type: ndcg_at_1000
|
| 880 |
-
value: 34.348
|
| 881 |
-
- type: ndcg_at_3
|
| 882 |
-
value: 23.026
|
| 883 |
-
- type: ndcg_at_5
|
| 884 |
-
value: 24.731
|
| 885 |
-
- type: precision_at_1
|
| 886 |
-
value: 19.683
|
| 887 |
-
- type: precision_at_10
|
| 888 |
-
value: 4.814
|
| 889 |
-
- type: precision_at_100
|
| 890 |
-
value: 0.836
|
| 891 |
-
- type: precision_at_1000
|
| 892 |
-
value: 0.126
|
| 893 |
-
- type: precision_at_3
|
| 894 |
-
value: 10.782
|
| 895 |
-
- type: precision_at_5
|
| 896 |
-
value: 7.825
|
| 897 |
-
- type: recall_at_1
|
| 898 |
-
value: 16.3
|
| 899 |
-
- type: recall_at_10
|
| 900 |
-
value: 35.521
|
| 901 |
-
- type: recall_at_100
|
| 902 |
-
value: 56.665
|
| 903 |
-
- type: recall_at_1000
|
| 904 |
-
value: 78.361
|
| 905 |
-
- type: recall_at_3
|
| 906 |
-
value: 25.223000000000003
|
| 907 |
-
- type: recall_at_5
|
| 908 |
-
value: 29.626
|
| 909 |
-
- task:
|
| 910 |
-
type: Retrieval
|
| 911 |
-
dataset:
|
| 912 |
-
type: BeIR/cqadupstack
|
| 913 |
-
name: MTEB CQADupstackUnixRetrieval
|
| 914 |
-
config: default
|
| 915 |
-
split: test
|
| 916 |
-
revision: None
|
| 917 |
-
metrics:
|
| 918 |
-
- type: map_at_1
|
| 919 |
-
value: 24.596999999999998
|
| 920 |
-
- type: map_at_10
|
| 921 |
-
value: 32.54
|
| 922 |
-
- type: map_at_100
|
| 923 |
-
value: 33.548
|
| 924 |
-
- type: map_at_1000
|
| 925 |
-
value: 33.661
|
| 926 |
-
- type: map_at_3
|
| 927 |
-
value: 30.134
|
| 928 |
-
- type: map_at_5
|
| 929 |
-
value: 31.468
|
| 930 |
-
- type: mrr_at_1
|
| 931 |
-
value: 28.825
|
| 932 |
-
- type: mrr_at_10
|
| 933 |
-
value: 36.495
|
| 934 |
-
- type: mrr_at_100
|
| 935 |
-
value: 37.329
|
| 936 |
-
- type: mrr_at_1000
|
| 937 |
-
value: 37.397999999999996
|
| 938 |
-
- type: mrr_at_3
|
| 939 |
-
value: 34.359
|
| 940 |
-
- type: mrr_at_5
|
| 941 |
-
value: 35.53
|
| 942 |
-
- type: ndcg_at_1
|
| 943 |
-
value: 28.825
|
| 944 |
-
- type: ndcg_at_10
|
| 945 |
-
value: 37.341
|
| 946 |
-
- type: ndcg_at_100
|
| 947 |
-
value: 42.221
|
| 948 |
-
- type: ndcg_at_1000
|
| 949 |
-
value: 44.799
|
| 950 |
-
- type: ndcg_at_3
|
| 951 |
-
value: 33.058
|
| 952 |
-
- type: ndcg_at_5
|
| 953 |
-
value: 34.961999999999996
|
| 954 |
-
- type: precision_at_1
|
| 955 |
-
value: 28.825
|
| 956 |
-
- type: precision_at_10
|
| 957 |
-
value: 6.175
|
| 958 |
-
- type: precision_at_100
|
| 959 |
-
value: 0.97
|
| 960 |
-
- type: precision_at_1000
|
| 961 |
-
value: 0.13
|
| 962 |
-
- type: precision_at_3
|
| 963 |
-
value: 14.924999999999999
|
| 964 |
-
- type: precision_at_5
|
| 965 |
-
value: 10.392
|
| 966 |
-
- type: recall_at_1
|
| 967 |
-
value: 24.596999999999998
|
| 968 |
-
- type: recall_at_10
|
| 969 |
-
value: 48.067
|
| 970 |
-
- type: recall_at_100
|
| 971 |
-
value: 69.736
|
| 972 |
-
- type: recall_at_1000
|
| 973 |
-
value: 87.855
|
| 974 |
-
- type: recall_at_3
|
| 975 |
-
value: 36.248999999999995
|
| 976 |
-
- type: recall_at_5
|
| 977 |
-
value: 41.086
|
| 978 |
-
- task:
|
| 979 |
-
type: Retrieval
|
| 980 |
-
dataset:
|
| 981 |
-
type: BeIR/cqadupstack
|
| 982 |
-
name: MTEB CQADupstackWebmastersRetrieval
|
| 983 |
-
config: default
|
| 984 |
-
split: test
|
| 985 |
-
revision: None
|
| 986 |
-
metrics:
|
| 987 |
-
- type: map_at_1
|
| 988 |
-
value: 24.224999999999998
|
| 989 |
-
- type: map_at_10
|
| 990 |
-
value: 31.826
|
| 991 |
-
- type: map_at_100
|
| 992 |
-
value: 33.366
|
| 993 |
-
- type: map_at_1000
|
| 994 |
-
value: 33.6
|
| 995 |
-
- type: map_at_3
|
| 996 |
-
value: 29.353
|
| 997 |
-
- type: map_at_5
|
| 998 |
-
value: 30.736
|
| 999 |
-
- type: mrr_at_1
|
| 1000 |
-
value: 28.656
|
| 1001 |
-
- type: mrr_at_10
|
| 1002 |
-
value: 36.092
|
| 1003 |
-
- type: mrr_at_100
|
| 1004 |
-
value: 37.076
|
| 1005 |
-
- type: mrr_at_1000
|
| 1006 |
-
value: 37.141999999999996
|
| 1007 |
-
- type: mrr_at_3
|
| 1008 |
-
value: 33.86
|
| 1009 |
-
- type: mrr_at_5
|
| 1010 |
-
value: 35.144999999999996
|
| 1011 |
-
- type: ndcg_at_1
|
| 1012 |
-
value: 28.656
|
| 1013 |
-
- type: ndcg_at_10
|
| 1014 |
-
value: 37.025999999999996
|
| 1015 |
-
- type: ndcg_at_100
|
| 1016 |
-
value: 42.844
|
| 1017 |
-
- type: ndcg_at_1000
|
| 1018 |
-
value: 45.716
|
| 1019 |
-
- type: ndcg_at_3
|
| 1020 |
-
value: 32.98
|
| 1021 |
-
- type: ndcg_at_5
|
| 1022 |
-
value: 34.922
|
| 1023 |
-
- type: precision_at_1
|
| 1024 |
-
value: 28.656
|
| 1025 |
-
- type: precision_at_10
|
| 1026 |
-
value: 6.976
|
| 1027 |
-
- type: precision_at_100
|
| 1028 |
-
value: 1.48
|
| 1029 |
-
- type: precision_at_1000
|
| 1030 |
-
value: 0.23700000000000002
|
| 1031 |
-
- type: precision_at_3
|
| 1032 |
-
value: 15.348999999999998
|
| 1033 |
-
- type: precision_at_5
|
| 1034 |
-
value: 11.028
|
| 1035 |
-
- type: recall_at_1
|
| 1036 |
-
value: 24.224999999999998
|
| 1037 |
-
- type: recall_at_10
|
| 1038 |
-
value: 46.589999999999996
|
| 1039 |
-
- type: recall_at_100
|
| 1040 |
-
value: 72.331
|
| 1041 |
-
- type: recall_at_1000
|
| 1042 |
-
value: 90.891
|
| 1043 |
-
- type: recall_at_3
|
| 1044 |
-
value: 34.996
|
| 1045 |
-
- type: recall_at_5
|
| 1046 |
-
value: 40.294000000000004
|
| 1047 |
-
- task:
|
| 1048 |
-
type: Retrieval
|
| 1049 |
-
dataset:
|
| 1050 |
-
type: BeIR/cqadupstack
|
| 1051 |
-
name: MTEB CQADupstackWordpressRetrieval
|
| 1052 |
-
config: default
|
| 1053 |
-
split: test
|
| 1054 |
-
revision: None
|
| 1055 |
-
metrics:
|
| 1056 |
-
- type: map_at_1
|
| 1057 |
-
value: 20.524
|
| 1058 |
-
- type: map_at_10
|
| 1059 |
-
value: 27.314
|
| 1060 |
-
- type: map_at_100
|
| 1061 |
-
value: 28.260999999999996
|
| 1062 |
-
- type: map_at_1000
|
| 1063 |
-
value: 28.37
|
| 1064 |
-
- type: map_at_3
|
| 1065 |
-
value: 25.020999999999997
|
| 1066 |
-
- type: map_at_5
|
| 1067 |
-
value: 25.942
|
| 1068 |
-
- type: mrr_at_1
|
| 1069 |
-
value: 22.181
|
| 1070 |
-
- type: mrr_at_10
|
| 1071 |
-
value: 29.149
|
| 1072 |
-
- type: mrr_at_100
|
| 1073 |
-
value: 30.006
|
| 1074 |
-
- type: mrr_at_1000
|
| 1075 |
-
value: 30.086000000000002
|
| 1076 |
-
- type: mrr_at_3
|
| 1077 |
-
value: 26.863999999999997
|
| 1078 |
-
- type: mrr_at_5
|
| 1079 |
-
value: 27.899
|
| 1080 |
-
- type: ndcg_at_1
|
| 1081 |
-
value: 22.181
|
| 1082 |
-
- type: ndcg_at_10
|
| 1083 |
-
value: 31.64
|
| 1084 |
-
- type: ndcg_at_100
|
| 1085 |
-
value: 36.502
|
| 1086 |
-
- type: ndcg_at_1000
|
| 1087 |
-
value: 39.176
|
| 1088 |
-
- type: ndcg_at_3
|
| 1089 |
-
value: 26.901999999999997
|
| 1090 |
-
- type: ndcg_at_5
|
| 1091 |
-
value: 28.493000000000002
|
| 1092 |
-
- type: precision_at_1
|
| 1093 |
-
value: 22.181
|
| 1094 |
-
- type: precision_at_10
|
| 1095 |
-
value: 5.065
|
| 1096 |
-
- type: precision_at_100
|
| 1097 |
-
value: 0.8099999999999999
|
| 1098 |
-
- type: precision_at_1000
|
| 1099 |
-
value: 0.11499999999999999
|
| 1100 |
-
- type: precision_at_3
|
| 1101 |
-
value: 11.214
|
| 1102 |
-
- type: precision_at_5
|
| 1103 |
-
value: 7.689
|
| 1104 |
-
- type: recall_at_1
|
| 1105 |
-
value: 20.524
|
| 1106 |
-
- type: recall_at_10
|
| 1107 |
-
value: 43.29
|
| 1108 |
-
- type: recall_at_100
|
| 1109 |
-
value: 65.935
|
| 1110 |
-
- type: recall_at_1000
|
| 1111 |
-
value: 85.80600000000001
|
| 1112 |
-
- type: recall_at_3
|
| 1113 |
-
value: 30.276999999999997
|
| 1114 |
-
- type: recall_at_5
|
| 1115 |
-
value: 34.056999999999995
|
| 1116 |
-
- task:
|
| 1117 |
-
type: Retrieval
|
| 1118 |
-
dataset:
|
| 1119 |
-
type: climate-fever
|
| 1120 |
-
name: MTEB ClimateFEVER
|
| 1121 |
-
config: default
|
| 1122 |
-
split: test
|
| 1123 |
-
revision: None
|
| 1124 |
-
metrics:
|
| 1125 |
-
- type: map_at_1
|
| 1126 |
-
value: 10.488999999999999
|
| 1127 |
-
- type: map_at_10
|
| 1128 |
-
value: 17.98
|
| 1129 |
-
- type: map_at_100
|
| 1130 |
-
value: 19.581
|
| 1131 |
-
- type: map_at_1000
|
| 1132 |
-
value: 19.739
|
| 1133 |
-
- type: map_at_3
|
| 1134 |
-
value: 15.054
|
| 1135 |
-
- type: map_at_5
|
| 1136 |
-
value: 16.439999999999998
|
| 1137 |
-
- type: mrr_at_1
|
| 1138 |
-
value: 23.192
|
| 1139 |
-
- type: mrr_at_10
|
| 1140 |
-
value: 33.831
|
| 1141 |
-
- type: mrr_at_100
|
| 1142 |
-
value: 34.833
|
| 1143 |
-
- type: mrr_at_1000
|
| 1144 |
-
value: 34.881
|
| 1145 |
-
- type: mrr_at_3
|
| 1146 |
-
value: 30.793
|
| 1147 |
-
- type: mrr_at_5
|
| 1148 |
-
value: 32.535
|
| 1149 |
-
- type: ndcg_at_1
|
| 1150 |
-
value: 23.192
|
| 1151 |
-
- type: ndcg_at_10
|
| 1152 |
-
value: 25.446
|
| 1153 |
-
- type: ndcg_at_100
|
| 1154 |
-
value: 31.948
|
| 1155 |
-
- type: ndcg_at_1000
|
| 1156 |
-
value: 35.028
|
| 1157 |
-
- type: ndcg_at_3
|
| 1158 |
-
value: 20.744
|
| 1159 |
-
- type: ndcg_at_5
|
| 1160 |
-
value: 22.233
|
| 1161 |
-
- type: precision_at_1
|
| 1162 |
-
value: 23.192
|
| 1163 |
-
- type: precision_at_10
|
| 1164 |
-
value: 8.026
|
| 1165 |
-
- type: precision_at_100
|
| 1166 |
-
value: 1.482
|
| 1167 |
-
- type: precision_at_1000
|
| 1168 |
-
value: 0.20500000000000002
|
| 1169 |
-
- type: precision_at_3
|
| 1170 |
-
value: 15.548
|
| 1171 |
-
- type: precision_at_5
|
| 1172 |
-
value: 11.87
|
| 1173 |
-
- type: recall_at_1
|
| 1174 |
-
value: 10.488999999999999
|
| 1175 |
-
- type: recall_at_10
|
| 1176 |
-
value: 30.865
|
| 1177 |
-
- type: recall_at_100
|
| 1178 |
-
value: 53.428
|
| 1179 |
-
- type: recall_at_1000
|
| 1180 |
-
value: 70.89
|
| 1181 |
-
- type: recall_at_3
|
| 1182 |
-
value: 19.245
|
| 1183 |
-
- type: recall_at_5
|
| 1184 |
-
value: 23.657
|
| 1185 |
-
- task:
|
| 1186 |
-
type: Retrieval
|
| 1187 |
-
dataset:
|
| 1188 |
-
type: dbpedia-entity
|
| 1189 |
-
name: MTEB DBPedia
|
| 1190 |
-
config: default
|
| 1191 |
-
split: test
|
| 1192 |
-
revision: None
|
| 1193 |
-
metrics:
|
| 1194 |
-
- type: map_at_1
|
| 1195 |
-
value: 7.123
|
| 1196 |
-
- type: map_at_10
|
| 1197 |
-
value: 14.448
|
| 1198 |
-
- type: map_at_100
|
| 1199 |
-
value: 19.798
|
| 1200 |
-
- type: map_at_1000
|
| 1201 |
-
value: 21.082
|
| 1202 |
-
- type: map_at_3
|
| 1203 |
-
value: 10.815
|
| 1204 |
-
- type: map_at_5
|
| 1205 |
-
value: 12.422
|
| 1206 |
-
- type: mrr_at_1
|
| 1207 |
-
value: 53.5
|
| 1208 |
-
- type: mrr_at_10
|
| 1209 |
-
value: 63.117999999999995
|
| 1210 |
-
- type: mrr_at_100
|
| 1211 |
-
value: 63.617999999999995
|
| 1212 |
-
- type: mrr_at_1000
|
| 1213 |
-
value: 63.63799999999999
|
| 1214 |
-
- type: mrr_at_3
|
| 1215 |
-
value: 60.708
|
| 1216 |
-
- type: mrr_at_5
|
| 1217 |
-
value: 62.171
|
| 1218 |
-
- type: ndcg_at_1
|
| 1219 |
-
value: 42.125
|
| 1220 |
-
- type: ndcg_at_10
|
| 1221 |
-
value: 31.703
|
| 1222 |
-
- type: ndcg_at_100
|
| 1223 |
-
value: 35.935
|
| 1224 |
-
- type: ndcg_at_1000
|
| 1225 |
-
value: 43.173
|
| 1226 |
-
- type: ndcg_at_3
|
| 1227 |
-
value: 35.498000000000005
|
| 1228 |
-
- type: ndcg_at_5
|
| 1229 |
-
value: 33.645
|
| 1230 |
-
- type: precision_at_1
|
| 1231 |
-
value: 53.5
|
| 1232 |
-
- type: precision_at_10
|
| 1233 |
-
value: 25.025
|
| 1234 |
-
- type: precision_at_100
|
| 1235 |
-
value: 8.19
|
| 1236 |
-
- type: precision_at_1000
|
| 1237 |
-
value: 1.806
|
| 1238 |
-
- type: precision_at_3
|
| 1239 |
-
value: 39.083
|
| 1240 |
-
- type: precision_at_5
|
| 1241 |
-
value: 33.050000000000004
|
| 1242 |
-
- type: recall_at_1
|
| 1243 |
-
value: 7.123
|
| 1244 |
-
- type: recall_at_10
|
| 1245 |
-
value: 19.581
|
| 1246 |
-
- type: recall_at_100
|
| 1247 |
-
value: 42.061
|
| 1248 |
-
- type: recall_at_1000
|
| 1249 |
-
value: 65.879
|
| 1250 |
-
- type: recall_at_3
|
| 1251 |
-
value: 12.026
|
| 1252 |
-
- type: recall_at_5
|
| 1253 |
-
value: 14.846
|
| 1254 |
-
- task:
|
| 1255 |
-
type: Classification
|
| 1256 |
-
dataset:
|
| 1257 |
-
type: mteb/emotion
|
| 1258 |
-
name: MTEB EmotionClassification
|
| 1259 |
-
config: default
|
| 1260 |
-
split: test
|
| 1261 |
-
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
| 1262 |
-
metrics:
|
| 1263 |
-
- type: accuracy
|
| 1264 |
-
value: 41.24
|
| 1265 |
-
- type: f1
|
| 1266 |
-
value: 36.76174115773002
|
| 1267 |
-
- task:
|
| 1268 |
-
type: Retrieval
|
| 1269 |
-
dataset:
|
| 1270 |
-
type: fever
|
| 1271 |
-
name: MTEB FEVER
|
| 1272 |
-
config: default
|
| 1273 |
-
split: test
|
| 1274 |
-
revision: None
|
| 1275 |
-
metrics:
|
| 1276 |
-
- type: map_at_1
|
| 1277 |
-
value: 47.821999999999996
|
| 1278 |
-
- type: map_at_10
|
| 1279 |
-
value: 59.794000000000004
|
| 1280 |
-
- type: map_at_100
|
| 1281 |
-
value: 60.316
|
| 1282 |
-
- type: map_at_1000
|
| 1283 |
-
value: 60.34
|
| 1284 |
-
- type: map_at_3
|
| 1285 |
-
value: 57.202
|
| 1286 |
-
- type: map_at_5
|
| 1287 |
-
value: 58.823
|
| 1288 |
-
- type: mrr_at_1
|
| 1289 |
-
value: 51.485
|
| 1290 |
-
- type: mrr_at_10
|
| 1291 |
-
value: 63.709
|
| 1292 |
-
- type: mrr_at_100
|
| 1293 |
-
value: 64.144
|
| 1294 |
-
- type: mrr_at_1000
|
| 1295 |
-
value: 64.158
|
| 1296 |
-
- type: mrr_at_3
|
| 1297 |
-
value: 61.251
|
| 1298 |
-
- type: mrr_at_5
|
| 1299 |
-
value: 62.818
|
| 1300 |
-
- type: ndcg_at_1
|
| 1301 |
-
value: 51.485
|
| 1302 |
-
- type: ndcg_at_10
|
| 1303 |
-
value: 66.097
|
| 1304 |
-
- type: ndcg_at_100
|
| 1305 |
-
value: 68.37
|
| 1306 |
-
- type: ndcg_at_1000
|
| 1307 |
-
value: 68.916
|
| 1308 |
-
- type: ndcg_at_3
|
| 1309 |
-
value: 61.12800000000001
|
| 1310 |
-
- type: ndcg_at_5
|
| 1311 |
-
value: 63.885000000000005
|
| 1312 |
-
- type: precision_at_1
|
| 1313 |
-
value: 51.485
|
| 1314 |
-
- type: precision_at_10
|
| 1315 |
-
value: 8.956999999999999
|
| 1316 |
-
- type: precision_at_100
|
| 1317 |
-
value: 1.02
|
| 1318 |
-
- type: precision_at_1000
|
| 1319 |
-
value: 0.108
|
| 1320 |
-
- type: precision_at_3
|
| 1321 |
-
value: 24.807000000000002
|
| 1322 |
-
- type: precision_at_5
|
| 1323 |
-
value: 16.387999999999998
|
| 1324 |
-
- type: recall_at_1
|
| 1325 |
-
value: 47.821999999999996
|
| 1326 |
-
- type: recall_at_10
|
| 1327 |
-
value: 81.773
|
| 1328 |
-
- type: recall_at_100
|
| 1329 |
-
value: 91.731
|
| 1330 |
-
- type: recall_at_1000
|
| 1331 |
-
value: 95.649
|
| 1332 |
-
- type: recall_at_3
|
| 1333 |
-
value: 68.349
|
| 1334 |
-
- type: recall_at_5
|
| 1335 |
-
value: 75.093
|
| 1336 |
-
- task:
|
| 1337 |
-
type: Retrieval
|
| 1338 |
-
dataset:
|
| 1339 |
-
type: fiqa
|
| 1340 |
-
name: MTEB FiQA2018
|
| 1341 |
-
config: default
|
| 1342 |
-
split: test
|
| 1343 |
-
revision: None
|
| 1344 |
-
metrics:
|
| 1345 |
-
- type: map_at_1
|
| 1346 |
-
value: 15.662999999999998
|
| 1347 |
-
- type: map_at_10
|
| 1348 |
-
value: 25.726
|
| 1349 |
-
- type: map_at_100
|
| 1350 |
-
value: 27.581
|
| 1351 |
-
- type: map_at_1000
|
| 1352 |
-
value: 27.772000000000002
|
| 1353 |
-
- type: map_at_3
|
| 1354 |
-
value: 21.859
|
| 1355 |
-
- type: map_at_5
|
| 1356 |
-
value: 24.058
|
| 1357 |
-
- type: mrr_at_1
|
| 1358 |
-
value: 30.247
|
| 1359 |
-
- type: mrr_at_10
|
| 1360 |
-
value: 39.581
|
| 1361 |
-
- type: mrr_at_100
|
| 1362 |
-
value: 40.594
|
| 1363 |
-
- type: mrr_at_1000
|
| 1364 |
-
value: 40.647
|
| 1365 |
-
- type: mrr_at_3
|
| 1366 |
-
value: 37.166
|
| 1367 |
-
- type: mrr_at_5
|
| 1368 |
-
value: 38.585
|
| 1369 |
-
- type: ndcg_at_1
|
| 1370 |
-
value: 30.247
|
| 1371 |
-
- type: ndcg_at_10
|
| 1372 |
-
value: 32.934999999999995
|
| 1373 |
-
- type: ndcg_at_100
|
| 1374 |
-
value: 40.062999999999995
|
| 1375 |
-
- type: ndcg_at_1000
|
| 1376 |
-
value: 43.492
|
| 1377 |
-
- type: ndcg_at_3
|
| 1378 |
-
value: 28.871000000000002
|
| 1379 |
-
- type: ndcg_at_5
|
| 1380 |
-
value: 30.492
|
| 1381 |
-
- type: precision_at_1
|
| 1382 |
-
value: 30.247
|
| 1383 |
-
- type: precision_at_10
|
| 1384 |
-
value: 9.522
|
| 1385 |
-
- type: precision_at_100
|
| 1386 |
-
value: 1.645
|
| 1387 |
-
- type: precision_at_1000
|
| 1388 |
-
value: 0.22499999999999998
|
| 1389 |
-
- type: precision_at_3
|
| 1390 |
-
value: 19.136
|
| 1391 |
-
- type: precision_at_5
|
| 1392 |
-
value: 14.753
|
| 1393 |
-
- type: recall_at_1
|
| 1394 |
-
value: 15.662999999999998
|
| 1395 |
-
- type: recall_at_10
|
| 1396 |
-
value: 39.595
|
| 1397 |
-
- type: recall_at_100
|
| 1398 |
-
value: 66.49199999999999
|
| 1399 |
-
- type: recall_at_1000
|
| 1400 |
-
value: 87.19
|
| 1401 |
-
- type: recall_at_3
|
| 1402 |
-
value: 26.346999999999998
|
| 1403 |
-
- type: recall_at_5
|
| 1404 |
-
value: 32.423
|
| 1405 |
-
- task:
|
| 1406 |
-
type: Retrieval
|
| 1407 |
-
dataset:
|
| 1408 |
-
type: hotpotqa
|
| 1409 |
-
name: MTEB HotpotQA
|
| 1410 |
-
config: default
|
| 1411 |
-
split: test
|
| 1412 |
-
revision: None
|
| 1413 |
-
metrics:
|
| 1414 |
-
- type: map_at_1
|
| 1415 |
-
value: 30.176
|
| 1416 |
-
- type: map_at_10
|
| 1417 |
-
value: 42.684
|
| 1418 |
-
- type: map_at_100
|
| 1419 |
-
value: 43.582
|
| 1420 |
-
- type: map_at_1000
|
| 1421 |
-
value: 43.668
|
| 1422 |
-
- type: map_at_3
|
| 1423 |
-
value: 39.964
|
| 1424 |
-
- type: map_at_5
|
| 1425 |
-
value: 41.589
|
| 1426 |
-
- type: mrr_at_1
|
| 1427 |
-
value: 60.351
|
| 1428 |
-
- type: mrr_at_10
|
| 1429 |
-
value: 67.669
|
| 1430 |
-
- type: mrr_at_100
|
| 1431 |
-
value: 68.089
|
| 1432 |
-
- type: mrr_at_1000
|
| 1433 |
-
value: 68.111
|
| 1434 |
-
- type: mrr_at_3
|
| 1435 |
-
value: 66.144
|
| 1436 |
-
- type: mrr_at_5
|
| 1437 |
-
value: 67.125
|
| 1438 |
-
- type: ndcg_at_1
|
| 1439 |
-
value: 60.351
|
| 1440 |
-
- type: ndcg_at_10
|
| 1441 |
-
value: 51.602000000000004
|
| 1442 |
-
- type: ndcg_at_100
|
| 1443 |
-
value: 55.186
|
| 1444 |
-
- type: ndcg_at_1000
|
| 1445 |
-
value: 56.96
|
| 1446 |
-
- type: ndcg_at_3
|
| 1447 |
-
value: 47.251
|
| 1448 |
-
- type: ndcg_at_5
|
| 1449 |
-
value: 49.584
|
| 1450 |
-
- type: precision_at_1
|
| 1451 |
-
value: 60.351
|
| 1452 |
-
- type: precision_at_10
|
| 1453 |
-
value: 10.804
|
| 1454 |
-
- type: precision_at_100
|
| 1455 |
-
value: 1.3639999999999999
|
| 1456 |
-
- type: precision_at_1000
|
| 1457 |
-
value: 0.16
|
| 1458 |
-
- type: precision_at_3
|
| 1459 |
-
value: 29.561
|
| 1460 |
-
- type: precision_at_5
|
| 1461 |
-
value: 19.581
|
| 1462 |
-
- type: recall_at_1
|
| 1463 |
-
value: 30.176
|
| 1464 |
-
- type: recall_at_10
|
| 1465 |
-
value: 54.018
|
| 1466 |
-
- type: recall_at_100
|
| 1467 |
-
value: 68.22399999999999
|
| 1468 |
-
- type: recall_at_1000
|
| 1469 |
-
value: 79.97999999999999
|
| 1470 |
-
- type: recall_at_3
|
| 1471 |
-
value: 44.342
|
| 1472 |
-
- type: recall_at_5
|
| 1473 |
-
value: 48.953
|
| 1474 |
-
- task:
|
| 1475 |
-
type: Classification
|
| 1476 |
-
dataset:
|
| 1477 |
-
type: mteb/imdb
|
| 1478 |
-
name: MTEB ImdbClassification
|
| 1479 |
-
config: default
|
| 1480 |
-
split: test
|
| 1481 |
-
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
| 1482 |
-
metrics:
|
| 1483 |
-
- type: accuracy
|
| 1484 |
-
value: 71.28320000000001
|
| 1485 |
-
- type: ap
|
| 1486 |
-
value: 65.20730065157146
|
| 1487 |
-
- type: f1
|
| 1488 |
-
value: 71.19193683354304
|
| 1489 |
-
- task:
|
| 1490 |
-
type: Retrieval
|
| 1491 |
-
dataset:
|
| 1492 |
-
type: msmarco
|
| 1493 |
-
name: MTEB MSMARCO
|
| 1494 |
-
config: default
|
| 1495 |
-
split: dev
|
| 1496 |
-
revision: None
|
| 1497 |
-
metrics:
|
| 1498 |
-
- type: map_at_1
|
| 1499 |
-
value: 19.686
|
| 1500 |
-
- type: map_at_10
|
| 1501 |
-
value: 31.189
|
| 1502 |
-
- type: map_at_100
|
| 1503 |
-
value: 32.368
|
| 1504 |
-
- type: map_at_1000
|
| 1505 |
-
value: 32.43
|
| 1506 |
-
- type: map_at_3
|
| 1507 |
-
value: 27.577
|
| 1508 |
-
- type: map_at_5
|
| 1509 |
-
value: 29.603
|
| 1510 |
-
- type: mrr_at_1
|
| 1511 |
-
value: 20.201
|
| 1512 |
-
- type: mrr_at_10
|
| 1513 |
-
value: 31.762
|
| 1514 |
-
- type: mrr_at_100
|
| 1515 |
-
value: 32.882
|
| 1516 |
-
- type: mrr_at_1000
|
| 1517 |
-
value: 32.937
|
| 1518 |
-
- type: mrr_at_3
|
| 1519 |
-
value: 28.177999999999997
|
| 1520 |
-
- type: mrr_at_5
|
| 1521 |
-
value: 30.212
|
| 1522 |
-
- type: ndcg_at_1
|
| 1523 |
-
value: 20.215
|
| 1524 |
-
- type: ndcg_at_10
|
| 1525 |
-
value: 37.730999999999995
|
| 1526 |
-
- type: ndcg_at_100
|
| 1527 |
-
value: 43.501
|
| 1528 |
-
- type: ndcg_at_1000
|
| 1529 |
-
value: 45.031
|
| 1530 |
-
- type: ndcg_at_3
|
| 1531 |
-
value: 30.336000000000002
|
| 1532 |
-
- type: ndcg_at_5
|
| 1533 |
-
value: 33.961000000000006
|
| 1534 |
-
- type: precision_at_1
|
| 1535 |
-
value: 20.215
|
| 1536 |
-
- type: precision_at_10
|
| 1537 |
-
value: 6.036
|
| 1538 |
-
- type: precision_at_100
|
| 1539 |
-
value: 0.895
|
| 1540 |
-
- type: precision_at_1000
|
| 1541 |
-
value: 0.10300000000000001
|
| 1542 |
-
- type: precision_at_3
|
| 1543 |
-
value: 13.028
|
| 1544 |
-
- type: precision_at_5
|
| 1545 |
-
value: 9.633
|
| 1546 |
-
- type: recall_at_1
|
| 1547 |
-
value: 19.686
|
| 1548 |
-
- type: recall_at_10
|
| 1549 |
-
value: 57.867999999999995
|
| 1550 |
-
- type: recall_at_100
|
| 1551 |
-
value: 84.758
|
| 1552 |
-
- type: recall_at_1000
|
| 1553 |
-
value: 96.44500000000001
|
| 1554 |
-
- type: recall_at_3
|
| 1555 |
-
value: 37.726
|
| 1556 |
-
- type: recall_at_5
|
| 1557 |
-
value: 46.415
|
| 1558 |
-
- task:
|
| 1559 |
-
type: Classification
|
| 1560 |
-
dataset:
|
| 1561 |
-
type: mteb/mtop_domain
|
| 1562 |
-
name: MTEB MTOPDomainClassification (en)
|
| 1563 |
-
config: en
|
| 1564 |
-
split: test
|
| 1565 |
-
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
| 1566 |
-
metrics:
|
| 1567 |
-
- type: accuracy
|
| 1568 |
-
value: 89.76972184222525
|
| 1569 |
-
- type: f1
|
| 1570 |
-
value: 89.11949030406099
|
| 1571 |
-
- task:
|
| 1572 |
-
type: Classification
|
| 1573 |
-
dataset:
|
| 1574 |
-
type: mteb/mtop_intent
|
| 1575 |
-
name: MTEB MTOPIntentClassification (en)
|
| 1576 |
-
config: en
|
| 1577 |
-
split: test
|
| 1578 |
-
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
| 1579 |
-
metrics:
|
| 1580 |
-
- type: accuracy
|
| 1581 |
-
value: 55.57455540355677
|
| 1582 |
-
- type: f1
|
| 1583 |
-
value: 39.344920096224506
|
| 1584 |
-
- task:
|
| 1585 |
-
type: Classification
|
| 1586 |
-
dataset:
|
| 1587 |
-
type: mteb/amazon_massive_intent
|
| 1588 |
-
name: MTEB MassiveIntentClassification (en)
|
| 1589 |
-
config: en
|
| 1590 |
-
split: test
|
| 1591 |
-
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 1592 |
-
metrics:
|
| 1593 |
-
- type: accuracy
|
| 1594 |
-
value: 63.772696704774724
|
| 1595 |
-
- type: f1
|
| 1596 |
-
value: 60.70041499812703
|
| 1597 |
-
- task:
|
| 1598 |
-
type: Classification
|
| 1599 |
-
dataset:
|
| 1600 |
-
type: mteb/amazon_massive_scenario
|
| 1601 |
-
name: MTEB MassiveScenarioClassification (en)
|
| 1602 |
-
config: en
|
| 1603 |
-
split: test
|
| 1604 |
-
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 1605 |
-
metrics:
|
| 1606 |
-
- type: accuracy
|
| 1607 |
-
value: 69.16274377942166
|
| 1608 |
-
- type: f1
|
| 1609 |
-
value: 68.06744012208019
|
| 1610 |
-
- task:
|
| 1611 |
-
type: Clustering
|
| 1612 |
-
dataset:
|
| 1613 |
-
type: mteb/medrxiv-clustering-p2p
|
| 1614 |
-
name: MTEB MedrxivClusteringP2P
|
| 1615 |
-
config: default
|
| 1616 |
-
split: test
|
| 1617 |
-
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
| 1618 |
-
metrics:
|
| 1619 |
-
- type: v_measure
|
| 1620 |
-
value: 31.822626760555522
|
| 1621 |
-
- task:
|
| 1622 |
-
type: Clustering
|
| 1623 |
-
dataset:
|
| 1624 |
-
type: mteb/medrxiv-clustering-s2s
|
| 1625 |
-
name: MTEB MedrxivClusteringS2S
|
| 1626 |
-
config: default
|
| 1627 |
-
split: test
|
| 1628 |
-
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
| 1629 |
-
metrics:
|
| 1630 |
-
- type: v_measure
|
| 1631 |
-
value: 27.98469036402807
|
| 1632 |
-
- task:
|
| 1633 |
-
type: Reranking
|
| 1634 |
-
dataset:
|
| 1635 |
-
type: mteb/mind_small
|
| 1636 |
-
name: MTEB MindSmallReranking
|
| 1637 |
-
config: default
|
| 1638 |
-
split: test
|
| 1639 |
-
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
| 1640 |
-
metrics:
|
| 1641 |
-
- type: map
|
| 1642 |
-
value: 30.911144124209166
|
| 1643 |
-
- type: mrr
|
| 1644 |
-
value: 31.950116175672292
|
| 1645 |
-
- task:
|
| 1646 |
-
type: Retrieval
|
| 1647 |
-
dataset:
|
| 1648 |
-
type: nfcorpus
|
| 1649 |
-
name: MTEB NFCorpus
|
| 1650 |
-
config: default
|
| 1651 |
-
split: test
|
| 1652 |
-
revision: None
|
| 1653 |
-
metrics:
|
| 1654 |
-
- type: map_at_1
|
| 1655 |
-
value: 5.157
|
| 1656 |
-
- type: map_at_10
|
| 1657 |
-
value: 11.086
|
| 1658 |
-
- type: map_at_100
|
| 1659 |
-
value: 13.927
|
| 1660 |
-
- type: map_at_1000
|
| 1661 |
-
value: 15.226999999999999
|
| 1662 |
-
- type: map_at_3
|
| 1663 |
-
value: 8.525
|
| 1664 |
-
- type: map_at_5
|
| 1665 |
-
value: 9.767000000000001
|
| 1666 |
-
- type: mrr_at_1
|
| 1667 |
-
value: 43.344
|
| 1668 |
-
- type: mrr_at_10
|
| 1669 |
-
value: 51.646
|
| 1670 |
-
- type: mrr_at_100
|
| 1671 |
-
value: 52.212
|
| 1672 |
-
- type: mrr_at_1000
|
| 1673 |
-
value: 52.263999999999996
|
| 1674 |
-
- type: mrr_at_3
|
| 1675 |
-
value: 50.052
|
| 1676 |
-
- type: mrr_at_5
|
| 1677 |
-
value: 51.166
|
| 1678 |
-
- type: ndcg_at_1
|
| 1679 |
-
value: 41.949999999999996
|
| 1680 |
-
- type: ndcg_at_10
|
| 1681 |
-
value: 30.552
|
| 1682 |
-
- type: ndcg_at_100
|
| 1683 |
-
value: 28.409000000000002
|
| 1684 |
-
- type: ndcg_at_1000
|
| 1685 |
-
value: 37.328
|
| 1686 |
-
- type: ndcg_at_3
|
| 1687 |
-
value: 37.114000000000004
|
| 1688 |
-
- type: ndcg_at_5
|
| 1689 |
-
value: 34.117999999999995
|
| 1690 |
-
- type: precision_at_1
|
| 1691 |
-
value: 43.344
|
| 1692 |
-
- type: precision_at_10
|
| 1693 |
-
value: 22.198
|
| 1694 |
-
- type: precision_at_100
|
| 1695 |
-
value: 7.234999999999999
|
| 1696 |
-
- type: precision_at_1000
|
| 1697 |
-
value: 2.013
|
| 1698 |
-
- type: precision_at_3
|
| 1699 |
-
value: 34.675
|
| 1700 |
-
- type: precision_at_5
|
| 1701 |
-
value: 29.04
|
| 1702 |
-
- type: recall_at_1
|
| 1703 |
-
value: 5.157
|
| 1704 |
-
- type: recall_at_10
|
| 1705 |
-
value: 13.999
|
| 1706 |
-
- type: recall_at_100
|
| 1707 |
-
value: 28.796
|
| 1708 |
-
- type: recall_at_1000
|
| 1709 |
-
value: 60.84
|
| 1710 |
-
- type: recall_at_3
|
| 1711 |
-
value: 9.603
|
| 1712 |
-
- type: recall_at_5
|
| 1713 |
-
value: 11.638
|
| 1714 |
-
- task:
|
| 1715 |
-
type: Retrieval
|
| 1716 |
-
dataset:
|
| 1717 |
-
type: nq
|
| 1718 |
-
name: MTEB NQ
|
| 1719 |
-
config: default
|
| 1720 |
-
split: test
|
| 1721 |
-
revision: None
|
| 1722 |
-
metrics:
|
| 1723 |
-
- type: map_at_1
|
| 1724 |
-
value: 33.024
|
| 1725 |
-
- type: map_at_10
|
| 1726 |
-
value: 47.229
|
| 1727 |
-
- type: map_at_100
|
| 1728 |
-
value: 48.195
|
| 1729 |
-
- type: map_at_1000
|
| 1730 |
-
value: 48.229
|
| 1731 |
-
- type: map_at_3
|
| 1732 |
-
value: 43.356
|
| 1733 |
-
- type: map_at_5
|
| 1734 |
-
value: 45.857
|
| 1735 |
-
- type: mrr_at_1
|
| 1736 |
-
value: 36.848
|
| 1737 |
-
- type: mrr_at_10
|
| 1738 |
-
value: 49.801
|
| 1739 |
-
- type: mrr_at_100
|
| 1740 |
-
value: 50.532999999999994
|
| 1741 |
-
- type: mrr_at_1000
|
| 1742 |
-
value: 50.556
|
| 1743 |
-
- type: mrr_at_3
|
| 1744 |
-
value: 46.605999999999995
|
| 1745 |
-
- type: mrr_at_5
|
| 1746 |
-
value: 48.735
|
| 1747 |
-
- type: ndcg_at_1
|
| 1748 |
-
value: 36.848
|
| 1749 |
-
- type: ndcg_at_10
|
| 1750 |
-
value: 54.202
|
| 1751 |
-
- type: ndcg_at_100
|
| 1752 |
-
value: 58.436
|
| 1753 |
-
- type: ndcg_at_1000
|
| 1754 |
-
value: 59.252
|
| 1755 |
-
- type: ndcg_at_3
|
| 1756 |
-
value: 47.082
|
| 1757 |
-
- type: ndcg_at_5
|
| 1758 |
-
value: 51.254
|
| 1759 |
-
- type: precision_at_1
|
| 1760 |
-
value: 36.848
|
| 1761 |
-
- type: precision_at_10
|
| 1762 |
-
value: 8.636000000000001
|
| 1763 |
-
- type: precision_at_100
|
| 1764 |
-
value: 1.105
|
| 1765 |
-
- type: precision_at_1000
|
| 1766 |
-
value: 0.11800000000000001
|
| 1767 |
-
- type: precision_at_3
|
| 1768 |
-
value: 21.08
|
| 1769 |
-
- type: precision_at_5
|
| 1770 |
-
value: 15.07
|
| 1771 |
-
- type: recall_at_1
|
| 1772 |
-
value: 33.024
|
| 1773 |
-
- type: recall_at_10
|
| 1774 |
-
value: 72.699
|
| 1775 |
-
- type: recall_at_100
|
| 1776 |
-
value: 91.387
|
| 1777 |
-
- type: recall_at_1000
|
| 1778 |
-
value: 97.482
|
| 1779 |
-
- type: recall_at_3
|
| 1780 |
-
value: 54.604
|
| 1781 |
-
- type: recall_at_5
|
| 1782 |
-
value: 64.224
|
| 1783 |
-
- task:
|
| 1784 |
-
type: Retrieval
|
| 1785 |
-
dataset:
|
| 1786 |
-
type: quora
|
| 1787 |
-
name: MTEB QuoraRetrieval
|
| 1788 |
-
config: default
|
| 1789 |
-
split: test
|
| 1790 |
-
revision: None
|
| 1791 |
-
metrics:
|
| 1792 |
-
- type: map_at_1
|
| 1793 |
-
value: 69.742
|
| 1794 |
-
- type: map_at_10
|
| 1795 |
-
value: 83.43
|
| 1796 |
-
- type: map_at_100
|
| 1797 |
-
value: 84.09400000000001
|
| 1798 |
-
- type: map_at_1000
|
| 1799 |
-
value: 84.113
|
| 1800 |
-
- type: map_at_3
|
| 1801 |
-
value: 80.464
|
| 1802 |
-
- type: map_at_5
|
| 1803 |
-
value: 82.356
|
| 1804 |
-
- type: mrr_at_1
|
| 1805 |
-
value: 80.31
|
| 1806 |
-
- type: mrr_at_10
|
| 1807 |
-
value: 86.629
|
| 1808 |
-
- type: mrr_at_100
|
| 1809 |
-
value: 86.753
|
| 1810 |
-
- type: mrr_at_1000
|
| 1811 |
-
value: 86.75399999999999
|
| 1812 |
-
- type: mrr_at_3
|
| 1813 |
-
value: 85.59
|
| 1814 |
-
- type: mrr_at_5
|
| 1815 |
-
value: 86.346
|
| 1816 |
-
- type: ndcg_at_1
|
| 1817 |
-
value: 80.28999999999999
|
| 1818 |
-
- type: ndcg_at_10
|
| 1819 |
-
value: 87.323
|
| 1820 |
-
- type: ndcg_at_100
|
| 1821 |
-
value: 88.682
|
| 1822 |
-
- type: ndcg_at_1000
|
| 1823 |
-
value: 88.812
|
| 1824 |
-
- type: ndcg_at_3
|
| 1825 |
-
value: 84.373
|
| 1826 |
-
- type: ndcg_at_5
|
| 1827 |
-
value: 86.065
|
| 1828 |
-
- type: precision_at_1
|
| 1829 |
-
value: 80.28999999999999
|
| 1830 |
-
- type: precision_at_10
|
| 1831 |
-
value: 13.239999999999998
|
| 1832 |
-
- type: precision_at_100
|
| 1833 |
-
value: 1.521
|
| 1834 |
-
- type: precision_at_1000
|
| 1835 |
-
value: 0.156
|
| 1836 |
-
- type: precision_at_3
|
| 1837 |
-
value: 36.827
|
| 1838 |
-
- type: precision_at_5
|
| 1839 |
-
value: 24.272
|
| 1840 |
-
- type: recall_at_1
|
| 1841 |
-
value: 69.742
|
| 1842 |
-
- type: recall_at_10
|
| 1843 |
-
value: 94.645
|
| 1844 |
-
- type: recall_at_100
|
| 1845 |
-
value: 99.375
|
| 1846 |
-
- type: recall_at_1000
|
| 1847 |
-
value: 99.97200000000001
|
| 1848 |
-
- type: recall_at_3
|
| 1849 |
-
value: 86.18400000000001
|
| 1850 |
-
- type: recall_at_5
|
| 1851 |
-
value: 90.958
|
| 1852 |
-
- task:
|
| 1853 |
-
type: Clustering
|
| 1854 |
-
dataset:
|
| 1855 |
-
type: mteb/reddit-clustering
|
| 1856 |
-
name: MTEB RedditClustering
|
| 1857 |
-
config: default
|
| 1858 |
-
split: test
|
| 1859 |
-
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
| 1860 |
-
metrics:
|
| 1861 |
-
- type: v_measure
|
| 1862 |
-
value: 50.52987829115787
|
| 1863 |
-
- task:
|
| 1864 |
-
type: Clustering
|
| 1865 |
-
dataset:
|
| 1866 |
-
type: mteb/reddit-clustering-p2p
|
| 1867 |
-
name: MTEB RedditClusteringP2P
|
| 1868 |
-
config: default
|
| 1869 |
-
split: test
|
| 1870 |
-
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
| 1871 |
-
metrics:
|
| 1872 |
-
- type: v_measure
|
| 1873 |
-
value: 56.73289360025561
|
| 1874 |
-
- task:
|
| 1875 |
-
type: Retrieval
|
| 1876 |
-
dataset:
|
| 1877 |
-
type: scidocs
|
| 1878 |
-
name: MTEB SCIDOCS
|
| 1879 |
-
config: default
|
| 1880 |
-
split: test
|
| 1881 |
-
revision: None
|
| 1882 |
-
metrics:
|
| 1883 |
-
- type: map_at_1
|
| 1884 |
-
value: 4.473
|
| 1885 |
-
- type: map_at_10
|
| 1886 |
-
value: 10.953
|
| 1887 |
-
- type: map_at_100
|
| 1888 |
-
value: 12.842
|
| 1889 |
-
- type: map_at_1000
|
| 1890 |
-
value: 13.122
|
| 1891 |
-
- type: map_at_3
|
| 1892 |
-
value: 7.863
|
| 1893 |
-
- type: map_at_5
|
| 1894 |
-
value: 9.376
|
| 1895 |
-
- type: mrr_at_1
|
| 1896 |
-
value: 22.0
|
| 1897 |
-
- type: mrr_at_10
|
| 1898 |
-
value: 32.639
|
| 1899 |
-
- type: mrr_at_100
|
| 1900 |
-
value: 33.658
|
| 1901 |
-
- type: mrr_at_1000
|
| 1902 |
-
value: 33.727000000000004
|
| 1903 |
-
- type: mrr_at_3
|
| 1904 |
-
value: 29.232999999999997
|
| 1905 |
-
- type: mrr_at_5
|
| 1906 |
-
value: 31.373
|
| 1907 |
-
- type: ndcg_at_1
|
| 1908 |
-
value: 22.0
|
| 1909 |
-
- type: ndcg_at_10
|
| 1910 |
-
value: 18.736
|
| 1911 |
-
- type: ndcg_at_100
|
| 1912 |
-
value: 26.209
|
| 1913 |
-
- type: ndcg_at_1000
|
| 1914 |
-
value: 31.427
|
| 1915 |
-
- type: ndcg_at_3
|
| 1916 |
-
value: 17.740000000000002
|
| 1917 |
-
- type: ndcg_at_5
|
| 1918 |
-
value: 15.625
|
| 1919 |
-
- type: precision_at_1
|
| 1920 |
-
value: 22.0
|
| 1921 |
-
- type: precision_at_10
|
| 1922 |
-
value: 9.700000000000001
|
| 1923 |
-
- type: precision_at_100
|
| 1924 |
-
value: 2.052
|
| 1925 |
-
- type: precision_at_1000
|
| 1926 |
-
value: 0.331
|
| 1927 |
-
- type: precision_at_3
|
| 1928 |
-
value: 16.533
|
| 1929 |
-
- type: precision_at_5
|
| 1930 |
-
value: 13.74
|
| 1931 |
-
- type: recall_at_1
|
| 1932 |
-
value: 4.473
|
| 1933 |
-
- type: recall_at_10
|
| 1934 |
-
value: 19.627
|
| 1935 |
-
- type: recall_at_100
|
| 1936 |
-
value: 41.63
|
| 1937 |
-
- type: recall_at_1000
|
| 1938 |
-
value: 67.173
|
| 1939 |
-
- type: recall_at_3
|
| 1940 |
-
value: 10.067
|
| 1941 |
-
- type: recall_at_5
|
| 1942 |
-
value: 13.927
|
| 1943 |
-
- task:
|
| 1944 |
-
type: STS
|
| 1945 |
-
dataset:
|
| 1946 |
-
type: mteb/sickr-sts
|
| 1947 |
-
name: MTEB SICK-R
|
| 1948 |
-
config: default
|
| 1949 |
-
split: test
|
| 1950 |
-
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
| 1951 |
-
metrics:
|
| 1952 |
-
- type: cos_sim_pearson
|
| 1953 |
-
value: 83.27314719076216
|
| 1954 |
-
- type: cos_sim_spearman
|
| 1955 |
-
value: 76.39295628838427
|
| 1956 |
-
- type: euclidean_pearson
|
| 1957 |
-
value: 80.38849931283136
|
| 1958 |
-
- type: euclidean_spearman
|
| 1959 |
-
value: 76.39295685543406
|
| 1960 |
-
- type: manhattan_pearson
|
| 1961 |
-
value: 80.28382869912794
|
| 1962 |
-
- type: manhattan_spearman
|
| 1963 |
-
value: 76.28362123227473
|
| 1964 |
-
- task:
|
| 1965 |
-
type: STS
|
| 1966 |
-
dataset:
|
| 1967 |
-
type: mteb/sts12-sts
|
| 1968 |
-
name: MTEB STS12
|
| 1969 |
-
config: default
|
| 1970 |
-
split: test
|
| 1971 |
-
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
| 1972 |
-
metrics:
|
| 1973 |
-
- type: cos_sim_pearson
|
| 1974 |
-
value: 82.36858074786585
|
| 1975 |
-
- type: cos_sim_spearman
|
| 1976 |
-
value: 72.81528838052759
|
| 1977 |
-
- type: euclidean_pearson
|
| 1978 |
-
value: 78.83576324502302
|
| 1979 |
-
- type: euclidean_spearman
|
| 1980 |
-
value: 72.8152880167174
|
| 1981 |
-
- type: manhattan_pearson
|
| 1982 |
-
value: 78.81284819385367
|
| 1983 |
-
- type: manhattan_spearman
|
| 1984 |
-
value: 72.76091465928633
|
| 1985 |
-
- task:
|
| 1986 |
-
type: STS
|
| 1987 |
-
dataset:
|
| 1988 |
-
type: mteb/sts13-sts
|
| 1989 |
-
name: MTEB STS13
|
| 1990 |
-
config: default
|
| 1991 |
-
split: test
|
| 1992 |
-
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
| 1993 |
-
metrics:
|
| 1994 |
-
- type: cos_sim_pearson
|
| 1995 |
-
value: 81.08132718998489
|
| 1996 |
-
- type: cos_sim_spearman
|
| 1997 |
-
value: 82.00988939015869
|
| 1998 |
-
- type: euclidean_pearson
|
| 1999 |
-
value: 81.02243847451692
|
| 2000 |
-
- type: euclidean_spearman
|
| 2001 |
-
value: 82.00992010206836
|
| 2002 |
-
- type: manhattan_pearson
|
| 2003 |
-
value: 80.97749306075134
|
| 2004 |
-
- type: manhattan_spearman
|
| 2005 |
-
value: 81.97800195109437
|
| 2006 |
-
- task:
|
| 2007 |
-
type: STS
|
| 2008 |
-
dataset:
|
| 2009 |
-
type: mteb/sts14-sts
|
| 2010 |
-
name: MTEB STS14
|
| 2011 |
-
config: default
|
| 2012 |
-
split: test
|
| 2013 |
-
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
| 2014 |
-
metrics:
|
| 2015 |
-
- type: cos_sim_pearson
|
| 2016 |
-
value: 80.83442047735284
|
| 2017 |
-
- type: cos_sim_spearman
|
| 2018 |
-
value: 77.50930325127395
|
| 2019 |
-
- type: euclidean_pearson
|
| 2020 |
-
value: 79.34941050260747
|
| 2021 |
-
- type: euclidean_spearman
|
| 2022 |
-
value: 77.50930324686452
|
| 2023 |
-
- type: manhattan_pearson
|
| 2024 |
-
value: 79.28081079289419
|
| 2025 |
-
- type: manhattan_spearman
|
| 2026 |
-
value: 77.42311420628891
|
| 2027 |
-
- task:
|
| 2028 |
-
type: STS
|
| 2029 |
-
dataset:
|
| 2030 |
-
type: mteb/sts15-sts
|
| 2031 |
-
name: MTEB STS15
|
| 2032 |
-
config: default
|
| 2033 |
-
split: test
|
| 2034 |
-
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
| 2035 |
-
metrics:
|
| 2036 |
-
- type: cos_sim_pearson
|
| 2037 |
-
value: 85.70132781546333
|
| 2038 |
-
- type: cos_sim_spearman
|
| 2039 |
-
value: 86.58415907086527
|
| 2040 |
-
- type: euclidean_pearson
|
| 2041 |
-
value: 85.63892869817083
|
| 2042 |
-
- type: euclidean_spearman
|
| 2043 |
-
value: 86.58415907086527
|
| 2044 |
-
- type: manhattan_pearson
|
| 2045 |
-
value: 85.56054168116064
|
| 2046 |
-
- type: manhattan_spearman
|
| 2047 |
-
value: 86.50292824173809
|
| 2048 |
-
- task:
|
| 2049 |
-
type: STS
|
| 2050 |
-
dataset:
|
| 2051 |
-
type: mteb/sts16-sts
|
| 2052 |
-
name: MTEB STS16
|
| 2053 |
-
config: default
|
| 2054 |
-
split: test
|
| 2055 |
-
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
| 2056 |
-
metrics:
|
| 2057 |
-
- type: cos_sim_pearson
|
| 2058 |
-
value: 81.48780971731246
|
| 2059 |
-
- type: cos_sim_spearman
|
| 2060 |
-
value: 82.79818891852887
|
| 2061 |
-
- type: euclidean_pearson
|
| 2062 |
-
value: 81.93990926192305
|
| 2063 |
-
- type: euclidean_spearman
|
| 2064 |
-
value: 82.79818891852887
|
| 2065 |
-
- type: manhattan_pearson
|
| 2066 |
-
value: 81.97538189750966
|
| 2067 |
-
- type: manhattan_spearman
|
| 2068 |
-
value: 82.88761825524075
|
| 2069 |
-
- task:
|
| 2070 |
-
type: STS
|
| 2071 |
-
dataset:
|
| 2072 |
-
type: mteb/sts17-crosslingual-sts
|
| 2073 |
-
name: MTEB STS17 (en-en)
|
| 2074 |
-
config: en-en
|
| 2075 |
-
split: test
|
| 2076 |
-
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
| 2077 |
-
metrics:
|
| 2078 |
-
- type: cos_sim_pearson
|
| 2079 |
-
value: 88.4989925729811
|
| 2080 |
-
- type: cos_sim_spearman
|
| 2081 |
-
value: 88.47370962620529
|
| 2082 |
-
- type: euclidean_pearson
|
| 2083 |
-
value: 88.2312980339956
|
| 2084 |
-
- type: euclidean_spearman
|
| 2085 |
-
value: 88.47370962620529
|
| 2086 |
-
- type: manhattan_pearson
|
| 2087 |
-
value: 88.15570940509707
|
| 2088 |
-
- type: manhattan_spearman
|
| 2089 |
-
value: 88.36900000569275
|
| 2090 |
-
- task:
|
| 2091 |
-
type: STS
|
| 2092 |
-
dataset:
|
| 2093 |
-
type: mteb/sts22-crosslingual-sts
|
| 2094 |
-
name: MTEB STS22 (en)
|
| 2095 |
-
config: en
|
| 2096 |
-
split: test
|
| 2097 |
-
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 2098 |
-
metrics:
|
| 2099 |
-
- type: cos_sim_pearson
|
| 2100 |
-
value: 63.90740805015967
|
| 2101 |
-
- type: cos_sim_spearman
|
| 2102 |
-
value: 63.968359064784444
|
| 2103 |
-
- type: euclidean_pearson
|
| 2104 |
-
value: 64.67928113832794
|
| 2105 |
-
- type: euclidean_spearman
|
| 2106 |
-
value: 63.968359064784444
|
| 2107 |
-
- type: manhattan_pearson
|
| 2108 |
-
value: 63.92597430517486
|
| 2109 |
-
- type: manhattan_spearman
|
| 2110 |
-
value: 63.31372007361158
|
| 2111 |
-
- task:
|
| 2112 |
-
type: STS
|
| 2113 |
-
dataset:
|
| 2114 |
-
type: mteb/stsbenchmark-sts
|
| 2115 |
-
name: MTEB STSBenchmark
|
| 2116 |
-
config: default
|
| 2117 |
-
split: test
|
| 2118 |
-
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
| 2119 |
-
metrics:
|
| 2120 |
-
- type: cos_sim_pearson
|
| 2121 |
-
value: 82.56902991447632
|
| 2122 |
-
- type: cos_sim_spearman
|
| 2123 |
-
value: 83.16262853325924
|
| 2124 |
-
- type: euclidean_pearson
|
| 2125 |
-
value: 83.47693312869555
|
| 2126 |
-
- type: euclidean_spearman
|
| 2127 |
-
value: 83.16266829656969
|
| 2128 |
-
- type: manhattan_pearson
|
| 2129 |
-
value: 83.51067558632968
|
| 2130 |
-
- type: manhattan_spearman
|
| 2131 |
-
value: 83.25136388306153
|
| 2132 |
-
- task:
|
| 2133 |
-
type: Reranking
|
| 2134 |
-
dataset:
|
| 2135 |
-
type: mteb/scidocs-reranking
|
| 2136 |
-
name: MTEB SciDocsRR
|
| 2137 |
-
config: default
|
| 2138 |
-
split: test
|
| 2139 |
-
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
| 2140 |
-
metrics:
|
| 2141 |
-
- type: map
|
| 2142 |
-
value: 80.1518040851234
|
| 2143 |
-
- type: mrr
|
| 2144 |
-
value: 94.49083052024228
|
| 2145 |
-
- task:
|
| 2146 |
-
type: Retrieval
|
| 2147 |
-
dataset:
|
| 2148 |
-
type: scifact
|
| 2149 |
-
name: MTEB SciFact
|
| 2150 |
-
config: default
|
| 2151 |
-
split: test
|
| 2152 |
-
revision: None
|
| 2153 |
-
metrics:
|
| 2154 |
-
- type: map_at_1
|
| 2155 |
-
value: 50.661
|
| 2156 |
-
- type: map_at_10
|
| 2157 |
-
value: 59.816
|
| 2158 |
-
- type: map_at_100
|
| 2159 |
-
value: 60.412
|
| 2160 |
-
- type: map_at_1000
|
| 2161 |
-
value: 60.446999999999996
|
| 2162 |
-
- type: map_at_3
|
| 2163 |
-
value: 56.567
|
| 2164 |
-
- type: map_at_5
|
| 2165 |
-
value: 58.45
|
| 2166 |
-
- type: mrr_at_1
|
| 2167 |
-
value: 53.667
|
| 2168 |
-
- type: mrr_at_10
|
| 2169 |
-
value: 61.342
|
| 2170 |
-
- type: mrr_at_100
|
| 2171 |
-
value: 61.8
|
| 2172 |
-
- type: mrr_at_1000
|
| 2173 |
-
value: 61.836
|
| 2174 |
-
- type: mrr_at_3
|
| 2175 |
-
value: 59.111000000000004
|
| 2176 |
-
- type: mrr_at_5
|
| 2177 |
-
value: 60.411
|
| 2178 |
-
- type: ndcg_at_1
|
| 2179 |
-
value: 53.667
|
| 2180 |
-
- type: ndcg_at_10
|
| 2181 |
-
value: 64.488
|
| 2182 |
-
- type: ndcg_at_100
|
| 2183 |
-
value: 67.291
|
| 2184 |
-
- type: ndcg_at_1000
|
| 2185 |
-
value: 68.338
|
| 2186 |
-
- type: ndcg_at_3
|
| 2187 |
-
value: 59.101000000000006
|
| 2188 |
-
- type: ndcg_at_5
|
| 2189 |
-
value: 61.812999999999995
|
| 2190 |
-
- type: precision_at_1
|
| 2191 |
-
value: 53.667
|
| 2192 |
-
- type: precision_at_10
|
| 2193 |
-
value: 8.799999999999999
|
| 2194 |
-
- type: precision_at_100
|
| 2195 |
-
value: 1.0330000000000001
|
| 2196 |
-
- type: precision_at_1000
|
| 2197 |
-
value: 0.11199999999999999
|
| 2198 |
-
- type: precision_at_3
|
| 2199 |
-
value: 23.0
|
| 2200 |
-
- type: precision_at_5
|
| 2201 |
-
value: 15.6
|
| 2202 |
-
- type: recall_at_1
|
| 2203 |
-
value: 50.661
|
| 2204 |
-
- type: recall_at_10
|
| 2205 |
-
value: 77.422
|
| 2206 |
-
- type: recall_at_100
|
| 2207 |
-
value: 90.667
|
| 2208 |
-
- type: recall_at_1000
|
| 2209 |
-
value: 99.0
|
| 2210 |
-
- type: recall_at_3
|
| 2211 |
-
value: 63.144
|
| 2212 |
-
- type: recall_at_5
|
| 2213 |
-
value: 69.817
|
| 2214 |
-
- task:
|
| 2215 |
-
type: PairClassification
|
| 2216 |
-
dataset:
|
| 2217 |
-
type: mteb/sprintduplicatequestions-pairclassification
|
| 2218 |
-
name: MTEB SprintDuplicateQuestions
|
| 2219 |
-
config: default
|
| 2220 |
-
split: test
|
| 2221 |
-
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
| 2222 |
-
metrics:
|
| 2223 |
-
- type: cos_sim_accuracy
|
| 2224 |
-
value: 99.81287128712871
|
| 2225 |
-
- type: cos_sim_ap
|
| 2226 |
-
value: 94.91998708151321
|
| 2227 |
-
- type: cos_sim_f1
|
| 2228 |
-
value: 90.36206017338093
|
| 2229 |
-
- type: cos_sim_precision
|
| 2230 |
-
value: 92.19562955254943
|
| 2231 |
-
- type: cos_sim_recall
|
| 2232 |
-
value: 88.6
|
| 2233 |
-
- type: dot_accuracy
|
| 2234 |
-
value: 99.81287128712871
|
| 2235 |
-
- type: dot_ap
|
| 2236 |
-
value: 94.91998708151321
|
| 2237 |
-
- type: dot_f1
|
| 2238 |
-
value: 90.36206017338093
|
| 2239 |
-
- type: dot_precision
|
| 2240 |
-
value: 92.19562955254943
|
| 2241 |
-
- type: dot_recall
|
| 2242 |
-
value: 88.6
|
| 2243 |
-
- type: euclidean_accuracy
|
| 2244 |
-
value: 99.81287128712871
|
| 2245 |
-
- type: euclidean_ap
|
| 2246 |
-
value: 94.9199944407842
|
| 2247 |
-
- type: euclidean_f1
|
| 2248 |
-
value: 90.36206017338093
|
| 2249 |
-
- type: euclidean_precision
|
| 2250 |
-
value: 92.19562955254943
|
| 2251 |
-
- type: euclidean_recall
|
| 2252 |
-
value: 88.6
|
| 2253 |
-
- type: manhattan_accuracy
|
| 2254 |
-
value: 99.8108910891089
|
| 2255 |
-
- type: manhattan_ap
|
| 2256 |
-
value: 94.83783896670839
|
| 2257 |
-
- type: manhattan_f1
|
| 2258 |
-
value: 90.27989821882952
|
| 2259 |
-
- type: manhattan_precision
|
| 2260 |
-
value: 91.91709844559585
|
| 2261 |
-
- type: manhattan_recall
|
| 2262 |
-
value: 88.7
|
| 2263 |
-
- type: max_accuracy
|
| 2264 |
-
value: 99.81287128712871
|
| 2265 |
-
- type: max_ap
|
| 2266 |
-
value: 94.9199944407842
|
| 2267 |
-
- type: max_f1
|
| 2268 |
-
value: 90.36206017338093
|
| 2269 |
-
- task:
|
| 2270 |
-
type: Clustering
|
| 2271 |
-
dataset:
|
| 2272 |
-
type: mteb/stackexchange-clustering
|
| 2273 |
-
name: MTEB StackExchangeClustering
|
| 2274 |
-
config: default
|
| 2275 |
-
split: test
|
| 2276 |
-
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
| 2277 |
-
metrics:
|
| 2278 |
-
- type: v_measure
|
| 2279 |
-
value: 56.165546412944714
|
| 2280 |
-
- task:
|
| 2281 |
-
type: Clustering
|
| 2282 |
-
dataset:
|
| 2283 |
-
type: mteb/stackexchange-clustering-p2p
|
| 2284 |
-
name: MTEB StackExchangeClusteringP2P
|
| 2285 |
-
config: default
|
| 2286 |
-
split: test
|
| 2287 |
-
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
| 2288 |
-
metrics:
|
| 2289 |
-
- type: v_measure
|
| 2290 |
-
value: 34.19894321136813
|
| 2291 |
-
- task:
|
| 2292 |
-
type: Reranking
|
| 2293 |
-
dataset:
|
| 2294 |
-
type: mteb/stackoverflowdupquestions-reranking
|
| 2295 |
-
name: MTEB StackOverflowDupQuestions
|
| 2296 |
-
config: default
|
| 2297 |
-
split: test
|
| 2298 |
-
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
| 2299 |
-
metrics:
|
| 2300 |
-
- type: map
|
| 2301 |
-
value: 50.02944308369115
|
| 2302 |
-
- type: mrr
|
| 2303 |
-
value: 50.63055714710127
|
| 2304 |
-
- task:
|
| 2305 |
-
type: Summarization
|
| 2306 |
-
dataset:
|
| 2307 |
-
type: mteb/summeval
|
| 2308 |
-
name: MTEB SummEval
|
| 2309 |
-
config: default
|
| 2310 |
-
split: test
|
| 2311 |
-
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
| 2312 |
-
metrics:
|
| 2313 |
-
- type: cos_sim_pearson
|
| 2314 |
-
value: 31.3377433394579
|
| 2315 |
-
- type: cos_sim_spearman
|
| 2316 |
-
value: 30.877807383527983
|
| 2317 |
-
- type: dot_pearson
|
| 2318 |
-
value: 31.337752376327405
|
| 2319 |
-
- type: dot_spearman
|
| 2320 |
-
value: 30.877807383527983
|
| 2321 |
-
- task:
|
| 2322 |
-
type: Retrieval
|
| 2323 |
-
dataset:
|
| 2324 |
-
type: trec-covid
|
| 2325 |
-
name: MTEB TRECCOVID
|
| 2326 |
-
config: default
|
| 2327 |
-
split: test
|
| 2328 |
-
revision: None
|
| 2329 |
-
metrics:
|
| 2330 |
-
- type: map_at_1
|
| 2331 |
-
value: 0.20500000000000002
|
| 2332 |
-
- type: map_at_10
|
| 2333 |
-
value: 1.6099999999999999
|
| 2334 |
-
- type: map_at_100
|
| 2335 |
-
value: 8.635
|
| 2336 |
-
- type: map_at_1000
|
| 2337 |
-
value: 20.419999999999998
|
| 2338 |
-
- type: map_at_3
|
| 2339 |
-
value: 0.59
|
| 2340 |
-
- type: map_at_5
|
| 2341 |
-
value: 0.9249999999999999
|
| 2342 |
-
- type: mrr_at_1
|
| 2343 |
-
value: 80.0
|
| 2344 |
-
- type: mrr_at_10
|
| 2345 |
-
value: 88.452
|
| 2346 |
-
- type: mrr_at_100
|
| 2347 |
-
value: 88.452
|
| 2348 |
-
- type: mrr_at_1000
|
| 2349 |
-
value: 88.452
|
| 2350 |
-
- type: mrr_at_3
|
| 2351 |
-
value: 87.667
|
| 2352 |
-
- type: mrr_at_5
|
| 2353 |
-
value: 88.167
|
| 2354 |
-
- type: ndcg_at_1
|
| 2355 |
-
value: 77.0
|
| 2356 |
-
- type: ndcg_at_10
|
| 2357 |
-
value: 67.079
|
| 2358 |
-
- type: ndcg_at_100
|
| 2359 |
-
value: 49.937
|
| 2360 |
-
- type: ndcg_at_1000
|
| 2361 |
-
value: 44.031
|
| 2362 |
-
- type: ndcg_at_3
|
| 2363 |
-
value: 73.123
|
| 2364 |
-
- type: ndcg_at_5
|
| 2365 |
-
value: 70.435
|
| 2366 |
-
- type: precision_at_1
|
| 2367 |
-
value: 80.0
|
| 2368 |
-
- type: precision_at_10
|
| 2369 |
-
value: 70.39999999999999
|
| 2370 |
-
- type: precision_at_100
|
| 2371 |
-
value: 51.25999999999999
|
| 2372 |
-
- type: precision_at_1000
|
| 2373 |
-
value: 19.698
|
| 2374 |
-
- type: precision_at_3
|
| 2375 |
-
value: 78.0
|
| 2376 |
-
- type: precision_at_5
|
| 2377 |
-
value: 75.2
|
| 2378 |
-
- type: recall_at_1
|
| 2379 |
-
value: 0.20500000000000002
|
| 2380 |
-
- type: recall_at_10
|
| 2381 |
-
value: 1.8399999999999999
|
| 2382 |
-
- type: recall_at_100
|
| 2383 |
-
value: 11.971
|
| 2384 |
-
- type: recall_at_1000
|
| 2385 |
-
value: 41.042
|
| 2386 |
-
- type: recall_at_3
|
| 2387 |
-
value: 0.632
|
| 2388 |
-
- type: recall_at_5
|
| 2389 |
-
value: 1.008
|
| 2390 |
-
- task:
|
| 2391 |
-
type: Retrieval
|
| 2392 |
-
dataset:
|
| 2393 |
-
type: webis-touche2020
|
| 2394 |
-
name: MTEB Touche2020
|
| 2395 |
-
config: default
|
| 2396 |
-
split: test
|
| 2397 |
-
revision: None
|
| 2398 |
-
metrics:
|
| 2399 |
-
- type: map_at_1
|
| 2400 |
-
value: 1.183
|
| 2401 |
-
- type: map_at_10
|
| 2402 |
-
value: 9.58
|
| 2403 |
-
- type: map_at_100
|
| 2404 |
-
value: 16.27
|
| 2405 |
-
- type: map_at_1000
|
| 2406 |
-
value: 17.977999999999998
|
| 2407 |
-
- type: map_at_3
|
| 2408 |
-
value: 4.521
|
| 2409 |
-
- type: map_at_5
|
| 2410 |
-
value: 6.567
|
| 2411 |
-
- type: mrr_at_1
|
| 2412 |
-
value: 12.245000000000001
|
| 2413 |
-
- type: mrr_at_10
|
| 2414 |
-
value: 33.486
|
| 2415 |
-
- type: mrr_at_100
|
| 2416 |
-
value: 34.989
|
| 2417 |
-
- type: mrr_at_1000
|
| 2418 |
-
value: 34.989
|
| 2419 |
-
- type: mrr_at_3
|
| 2420 |
-
value: 28.231
|
| 2421 |
-
- type: mrr_at_5
|
| 2422 |
-
value: 31.701
|
| 2423 |
-
- type: ndcg_at_1
|
| 2424 |
-
value: 9.184000000000001
|
| 2425 |
-
- type: ndcg_at_10
|
| 2426 |
-
value: 22.133
|
| 2427 |
-
- type: ndcg_at_100
|
| 2428 |
-
value: 36.882
|
| 2429 |
-
- type: ndcg_at_1000
|
| 2430 |
-
value: 48.487
|
| 2431 |
-
- type: ndcg_at_3
|
| 2432 |
-
value: 18.971
|
| 2433 |
-
- type: ndcg_at_5
|
| 2434 |
-
value: 20.107
|
| 2435 |
-
- type: precision_at_1
|
| 2436 |
-
value: 12.245000000000001
|
| 2437 |
-
- type: precision_at_10
|
| 2438 |
-
value: 21.837
|
| 2439 |
-
- type: precision_at_100
|
| 2440 |
-
value: 8.265
|
| 2441 |
-
- type: precision_at_1000
|
| 2442 |
-
value: 1.606
|
| 2443 |
-
- type: precision_at_3
|
| 2444 |
-
value: 22.448999999999998
|
| 2445 |
-
- type: precision_at_5
|
| 2446 |
-
value: 23.265
|
| 2447 |
-
- type: recall_at_1
|
| 2448 |
-
value: 1.183
|
| 2449 |
-
- type: recall_at_10
|
| 2450 |
-
value: 17.01
|
| 2451 |
-
- type: recall_at_100
|
| 2452 |
-
value: 51.666000000000004
|
| 2453 |
-
- type: recall_at_1000
|
| 2454 |
-
value: 87.56
|
| 2455 |
-
- type: recall_at_3
|
| 2456 |
-
value: 6.0280000000000005
|
| 2457 |
-
- type: recall_at_5
|
| 2458 |
-
value: 9.937999999999999
|
| 2459 |
-
- task:
|
| 2460 |
-
type: Classification
|
| 2461 |
-
dataset:
|
| 2462 |
-
type: mteb/toxic_conversations_50k
|
| 2463 |
-
name: MTEB ToxicConversationsClassification
|
| 2464 |
-
config: default
|
| 2465 |
-
split: test
|
| 2466 |
-
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
| 2467 |
-
metrics:
|
| 2468 |
-
- type: accuracy
|
| 2469 |
-
value: 70.6812
|
| 2470 |
-
- type: ap
|
| 2471 |
-
value: 13.776718216594006
|
| 2472 |
-
- type: f1
|
| 2473 |
-
value: 54.14269849375851
|
| 2474 |
-
- task:
|
| 2475 |
-
type: Classification
|
| 2476 |
-
dataset:
|
| 2477 |
-
type: mteb/tweet_sentiment_extraction
|
| 2478 |
-
name: MTEB TweetSentimentExtractionClassification
|
| 2479 |
-
config: default
|
| 2480 |
-
split: test
|
| 2481 |
-
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
| 2482 |
-
metrics:
|
| 2483 |
-
- type: accuracy
|
| 2484 |
-
value: 57.3372948500283
|
| 2485 |
-
- type: f1
|
| 2486 |
-
value: 57.39381291375
|
| 2487 |
-
- task:
|
| 2488 |
-
type: Clustering
|
| 2489 |
-
dataset:
|
| 2490 |
-
type: mteb/twentynewsgroups-clustering
|
| 2491 |
-
name: MTEB TwentyNewsgroupsClustering
|
| 2492 |
-
config: default
|
| 2493 |
-
split: test
|
| 2494 |
-
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
| 2495 |
-
metrics:
|
| 2496 |
-
- type: v_measure
|
| 2497 |
-
value: 41.49681931876514
|
| 2498 |
-
- task:
|
| 2499 |
-
type: PairClassification
|
| 2500 |
-
dataset:
|
| 2501 |
-
type: mteb/twittersemeval2015-pairclassification
|
| 2502 |
-
name: MTEB TwitterSemEval2015
|
| 2503 |
-
config: default
|
| 2504 |
-
split: test
|
| 2505 |
-
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
| 2506 |
-
metrics:
|
| 2507 |
-
- type: cos_sim_accuracy
|
| 2508 |
-
value: 84.65756690707516
|
| 2509 |
-
- type: cos_sim_ap
|
| 2510 |
-
value: 70.06190309300052
|
| 2511 |
-
- type: cos_sim_f1
|
| 2512 |
-
value: 65.49254432311848
|
| 2513 |
-
- type: cos_sim_precision
|
| 2514 |
-
value: 59.00148085466469
|
| 2515 |
-
- type: cos_sim_recall
|
| 2516 |
-
value: 73.58839050131925
|
| 2517 |
-
- type: dot_accuracy
|
| 2518 |
-
value: 84.65756690707516
|
| 2519 |
-
- type: dot_ap
|
| 2520 |
-
value: 70.06187157356817
|
| 2521 |
-
- type: dot_f1
|
| 2522 |
-
value: 65.49254432311848
|
| 2523 |
-
- type: dot_precision
|
| 2524 |
-
value: 59.00148085466469
|
| 2525 |
-
- type: dot_recall
|
| 2526 |
-
value: 73.58839050131925
|
| 2527 |
-
- type: euclidean_accuracy
|
| 2528 |
-
value: 84.65756690707516
|
| 2529 |
-
- type: euclidean_ap
|
| 2530 |
-
value: 70.06190439203068
|
| 2531 |
-
- type: euclidean_f1
|
| 2532 |
-
value: 65.49254432311848
|
| 2533 |
-
- type: euclidean_precision
|
| 2534 |
-
value: 59.00148085466469
|
| 2535 |
-
- type: euclidean_recall
|
| 2536 |
-
value: 73.58839050131925
|
| 2537 |
-
- type: manhattan_accuracy
|
| 2538 |
-
value: 84.58604041246946
|
| 2539 |
-
- type: manhattan_ap
|
| 2540 |
-
value: 69.93103436414437
|
| 2541 |
-
- type: manhattan_f1
|
| 2542 |
-
value: 65.48780487804878
|
| 2543 |
-
- type: manhattan_precision
|
| 2544 |
-
value: 60.8843537414966
|
| 2545 |
-
- type: manhattan_recall
|
| 2546 |
-
value: 70.84432717678101
|
| 2547 |
-
- type: max_accuracy
|
| 2548 |
-
value: 84.65756690707516
|
| 2549 |
-
- type: max_ap
|
| 2550 |
-
value: 70.06190439203068
|
| 2551 |
-
- type: max_f1
|
| 2552 |
-
value: 65.49254432311848
|
| 2553 |
-
- task:
|
| 2554 |
-
type: PairClassification
|
| 2555 |
-
dataset:
|
| 2556 |
-
type: mteb/twitterurlcorpus-pairclassification
|
| 2557 |
-
name: MTEB TwitterURLCorpus
|
| 2558 |
-
config: default
|
| 2559 |
-
split: test
|
| 2560 |
-
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
| 2561 |
-
metrics:
|
| 2562 |
-
- type: cos_sim_accuracy
|
| 2563 |
-
value: 88.78410369852912
|
| 2564 |
-
- type: cos_sim_ap
|
| 2565 |
-
value: 85.45825760499459
|
| 2566 |
-
- type: cos_sim_f1
|
| 2567 |
-
value: 77.73455035163849
|
| 2568 |
-
- type: cos_sim_precision
|
| 2569 |
-
value: 75.5966239813737
|
| 2570 |
-
- type: cos_sim_recall
|
| 2571 |
-
value: 79.9969202340622
|
| 2572 |
-
- type: dot_accuracy
|
| 2573 |
-
value: 88.78410369852912
|
| 2574 |
-
- type: dot_ap
|
| 2575 |
-
value: 85.45825790635979
|
| 2576 |
-
- type: dot_f1
|
| 2577 |
-
value: 77.73455035163849
|
| 2578 |
-
- type: dot_precision
|
| 2579 |
-
value: 75.5966239813737
|
| 2580 |
-
- type: dot_recall
|
| 2581 |
-
value: 79.9969202340622
|
| 2582 |
-
- type: euclidean_accuracy
|
| 2583 |
-
value: 88.78410369852912
|
| 2584 |
-
- type: euclidean_ap
|
| 2585 |
-
value: 85.45826341243391
|
| 2586 |
-
- type: euclidean_f1
|
| 2587 |
-
value: 77.73455035163849
|
| 2588 |
-
- type: euclidean_precision
|
| 2589 |
-
value: 75.5966239813737
|
| 2590 |
-
- type: euclidean_recall
|
| 2591 |
-
value: 79.9969202340622
|
| 2592 |
-
- type: manhattan_accuracy
|
| 2593 |
-
value: 88.7026041060271
|
| 2594 |
-
- type: manhattan_ap
|
| 2595 |
-
value: 85.43182830781821
|
| 2596 |
-
- type: manhattan_f1
|
| 2597 |
-
value: 77.61487303506651
|
| 2598 |
-
- type: manhattan_precision
|
| 2599 |
-
value: 76.20955773226477
|
| 2600 |
-
- type: manhattan_recall
|
| 2601 |
-
value: 79.07299045272559
|
| 2602 |
-
- type: max_accuracy
|
| 2603 |
-
value: 88.78410369852912
|
| 2604 |
-
- type: max_ap
|
| 2605 |
-
value: 85.45826341243391
|
| 2606 |
-
- type: max_f1
|
| 2607 |
-
value: 77.73455035163849
|
| 2608 |
-
---
|
|
|
|
| 2 |
pipeline_tag: sentence-similarity
|
| 3 |
tags:
|
| 4 |
- finetuner
|
| 5 |
+
- mteb
|
| 6 |
- sentence-transformers
|
| 7 |
- feature-extraction
|
| 8 |
- sentence-similarity
|
| 9 |
+
- alibi
|
| 10 |
datasets:
|
| 11 |
+
- allenai/c4
|
| 12 |
language: en
|
| 13 |
license: apache-2.0
|
| 14 |
model-index:
|
| 15 |
+
- name: jina-embedding-s-en-v2
|
| 16 |
+
results: []
|
| 17 |
+
---
|
| 18 |
+
<!-- TODO: add evaluation results here -->
|
| 19 |
+
<br><br>
|
| 20 |
+
|
| 21 |
+
<p align="center">
|
| 22 |
+
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
| 23 |
+
</p>
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
<p align="center">
|
| 27 |
+
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>, <a href="https://github.com/jina-ai/finetuner"><b>Finetuner</b></a> team.</b>
|
| 28 |
+
</p>
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
## Intended Usage & Model Info
|
| 32 |
+
|
| 33 |
+
`jina-embedding-s-en-v2` is an English, monolingual embedding model supporting 8k sequence length.
|
| 34 |
+
It is based on a Bert architecture that supports the symmetric bidirectional variant of ALiBi to support longer sequence length.
|
| 35 |
+
The backbone Jina Bert Small model is pretrained on the C4 dataset.
|
| 36 |
+
The model is further trained on Jina AI's collection of more than 40 datasets of sentence pairs and hard negatives.
|
| 37 |
+
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
|
| 38 |
+
|
| 39 |
+
The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length thanks to ALiBi.
|
| 40 |
+
This makes our model useful for a range of use cases, especially when processing long documents is needed, including long document retrieval, semantic textual similarity, text reranking, recommendation, RAG and LLM-based generative search,...
|
| 41 |
+
|
| 42 |
+
This model has 33 million parameters, which enables lightning-fast and memory efficient inference on long documents, while still delivering impressive performance.
|
| 43 |
+
Additionally, we provide the following embedding models, supporting 8k sequence length as well:
|
| 44 |
+
|
| 45 |
+
- [`jina-embedding-s-en-v2`](https://huggingface.co/jinaai/jina-embedding-s-en-v2): 33 million parameters **(you are here)**.
|
| 46 |
+
- [`jina-embedding-b-en-v2`](https://huggingface.co/jinaai/jina-embedding-b-en-v2): 137 million parameters.
|
| 47 |
+
- [`jina-embedding-l-en-v2`](https://huggingface.co/jinaai/jina-embedding-l-en-v2): 435 million parameters.
|
| 48 |
+
|
| 49 |
+
## Data & Parameters
|
| 50 |
+
|
| 51 |
+
Please checkout our [technical blog](https://arxiv.org/abs/2307.11224).
|
| 52 |
+
|
| 53 |
+
## Metrics
|
| 54 |
+
|
| 55 |
+
We compared the model against `all-minilm-l6-v2`/`all-mpnet-base-v2` from sbert and `text-embeddings-ada-002` from OpenAI:
|
| 56 |
+
|
| 57 |
+
<!-- TODO: add evaluation table here -->
|
| 58 |
+
|
| 59 |
+
## Usage
|
| 60 |
+
|
| 61 |
+
You can use Jina Embedding models directly from transformers package:
|
| 62 |
+
```python
|
| 63 |
+
!pip install transformers
|
| 64 |
+
from transformers import AutoModel
|
| 65 |
+
from numpy.linalg import norm
|
| 66 |
+
|
| 67 |
+
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
| 68 |
+
model = AutoModel.from_pretrained('jinaai/jina-embedding-s-en-v2', trust_remote_code=True) # trust_remote_code is needed to use the encode method
|
| 69 |
+
embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?'])
|
| 70 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
For long sequences, it's recommended to perform inference using Flash Attention. Using Flash Attention allows you to increase the batch size and throughput for long sequence length.
|
| 74 |
+
We include an experimental implementation for Flash Attention, shipped with the model.
|
| 75 |
+
Install the following triton version:
|
| 76 |
+
`pip install triton==2.0.0.dev20221202`.
|
| 77 |
+
Now run the same code above, but make sure to set the parameter `with_flash` to `True` when you load the model. You also have to use either `fp16` or `bf16`:
|
| 78 |
+
```python
|
| 79 |
+
from transformers import AutoModel
|
| 80 |
+
from numpy.linalg import norm
|
| 81 |
+
import torch
|
| 82 |
+
|
| 83 |
+
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
| 84 |
+
model = AutoModel.from_pretrained('jinaai/jina-embedding-s-en-v2', trust_remote_code=True, with_flash=True, torch_dtype=torch.float16).cuda() # trust_remote_code is needed to use the encode method
|
| 85 |
+
embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?'])
|
| 86 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
## Fine-tuning
|
| 90 |
+
|
| 91 |
+
Please consider [Finetuner](https://github.com/jina-ai/finetuner).
|
| 92 |
+
|
| 93 |
+
## Plans
|
| 94 |
+
The development of new multilingual models is currently underway. We will be targeting mainly the German and Spanish languages. The upcoming models will be called `jina-embedding-s/b/l-de/es-v2`.
|
| 95 |
+
|
| 96 |
+
## Contact
|
| 97 |
+
|
| 98 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
| 99 |
+
|
| 100 |
+
## Citation
|
| 101 |
+
|
| 102 |
+
If you find Jina Embeddings useful in your research, please cite the following paper:
|
| 103 |
+
|
| 104 |
+
<!-- TODO: update the paper ID once it is published on arxiv -->
|
| 105 |
+
``` latex
|
| 106 |
+
@misc{günther2023jina,
|
| 107 |
+
title={Beyond the 512-Token Barrier: Training General-Purpose Text
|
| 108 |
+
Embeddings for Large Documents},
|
| 109 |
+
author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang},
|
| 110 |
+
year={2023},
|
| 111 |
+
eprint={2307.11224},
|
| 112 |
+
archivePrefix={arXiv},
|
| 113 |
+
primaryClass={cs.CL}
|
| 114 |
+
}
|
| 115 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|