import os import torch import warnings from .model_minimind import * from typing import Optional, Tuple, List from torch import nn from transformers import CLIPProcessor, CLIPModel from typing import List warnings.filterwarnings('ignore') class VLMConfig(MiniMindConfig): model_type = "minimind-v" def __init__( self, image_special_token: str = '@' * 196, image_ids: List = [34] * 196, **kwargs, ): self.image_special_token = image_special_token self.image_ids = image_ids super().__init__(**kwargs) class VisionProj(nn.Module): def __init__(self, ve_hidden_size=768, hidden_size=512): super().__init__() self.ve_hidden_size = ve_hidden_size self.hidden_size = hidden_size self.vision_proj = nn.Sequential( nn.Linear(self.ve_hidden_size, self.hidden_size) ) def forward(self, image_encoders): vision_proj = self.vision_proj(image_encoders) return vision_proj # 继承自语言模型 class MiniMindVLM(MiniMindForCausalLM): config_class = VLMConfig def __init__(self, params: VLMConfig = None, vision_model_path="./model/vision_model/clip-vit-base-patch16"): super().__init__(params) if not params: params = VLMConfig() self.params = params self.vision_encoder, self.processor = self.__class__.get_vision_model(vision_model_path) self.vision_proj = VisionProj(hidden_size=params.hidden_size) @staticmethod def get_vision_model(model_path: str): from transformers import logging as hf_logging hf_logging.set_verbosity_error() if not os.path.exists(model_path): return None, None model = CLIPModel.from_pretrained(model_path) processor = CLIPProcessor.from_pretrained(model_path) # 冻结 vision_encoder 的所有参数 for param in model.parameters(): param.requires_grad = False return model.eval(), processor @staticmethod def image2tensor(image, processor): if image.mode in ['RGBA', 'LA']: image = image.convert('RGB') inputs = processor(images=image, return_tensors="pt")['pixel_values'] return inputs @staticmethod def get_image_embeddings(image_tensors, vision_model): with torch.no_grad(): outputs = vision_model.vision_model(pixel_values=image_tensors) img_embedding = outputs.last_hidden_state[:, 1:, :].squeeze() return img_embedding def count_vision_proj(self, tokens, h, vision_tensors=None, seqlen=512): def find_indices(tokens, image_ids): image_ids_tensor = torch.tensor(image_ids).to(tokens.device) len_image_ids = len(image_ids) if len_image_ids > tokens.size(1): return None tokens_view = tokens.unfold(1, len_image_ids, 1) matches = (tokens_view == image_ids_tensor).all(dim=2) return { batch_idx: [(idx.item(), idx.item() + len_image_ids - 1) for idx in matches[batch_idx].nonzero(as_tuple=True)[0]] for batch_idx in range(tokens.size(0)) if matches[batch_idx].any() } or None image_indices = find_indices(tokens, self.params.image_ids) if vision_tensors is not None and image_indices: vision_proj = self.vision_proj(vision_tensors) if len(vision_proj.shape) == 3: vision_proj = vision_proj.unsqueeze(0) new_h = [] for i in range(h.size(0)): if i in image_indices: h_i = h[i] img_idx = 0 for start_idx, end_idx in image_indices[i]: if img_idx < vision_proj.size(1): h_i = torch.cat((h_i[:start_idx], vision_proj[i][img_idx], h_i[end_idx + 1:]), dim=0)[ :seqlen] img_idx += 1 new_h.append(h_i) else: new_h.append(h[i]) return torch.stack(new_h, dim=0) return h def forward(self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: bool = False, logits_to_keep: Union[int, torch.Tensor] = 0, pixel_values: Optional[torch.FloatTensor] = None, **args): batch_size, seq_length = input_ids.shape if hasattr(past_key_values, 'layers'): past_key_values = None past_key_values = past_key_values or [None] * len(self.model.layers) start_pos = past_key_values[0][0].shape[1] if past_key_values[0] is not None else 0 hidden_states = self.model.dropout(self.model.embed_tokens(input_ids)) if pixel_values is not None and start_pos == 0: if len(pixel_values.shape) == 6: pixel_values = pixel_values.squeeze(2) bs, num, c, im_h, im_w = pixel_values.shape stack_dim = 1 if bs > 1 else 0 vision_tensors = torch.stack([ MiniMindVLM.get_image_embeddings(pixel_values[:, i, :, :, :], self.vision_encoder) for i in range(num) ], dim=stack_dim) hidden_states = self.count_vision_proj(tokens=input_ids, h=hidden_states, vision_tensors=vision_tensors, seqlen=input_ids.shape[1]) position_embeddings = ( self.model.freqs_cos[start_pos:start_pos + seq_length], self.model.freqs_sin[start_pos:start_pos + seq_length] ) presents = [] for layer_idx, (layer, past_key_value) in enumerate(zip(self.model.layers, past_key_values)): hidden_states, present = layer( hidden_states, position_embeddings, past_key_value=past_key_value, use_cache=use_cache, attention_mask=attention_mask ) presents.append(present) hidden_states = self.model.norm(hidden_states) aux_loss = sum( layer.mlp.aux_loss for layer in self.model.layers if isinstance(layer.mlp, MOEFeedForward) ) slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) output = CausalLMOutputWithPast(logits=logits, past_key_values=presents, hidden_states=hidden_states) output.aux_loss = aux_loss return output